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ABSTRACT—It has been proposed that human category

learning consists of an early abstraction-based stage fol-

lowed by a later exemplar-memorization stage. To inves-

tigate whether similar processing stages extend to category

learning in a nonverbal species, we applied a prototype-

exception paradigm to investigating pigeon category

learning. Five birds and 8 humans learned six-dimensional

perceptual categories constructed to include prototypes,

typical items, and exceptions. We evaluated the birds’ and

humans’ categorization strategies at different points dur-

ing learning. Early on in both species, prototype per-

formance improved rapidly as exception performance

remained below chance, indicating an initial mastery of

the categories’ general structure. Later on, exception

performance improved selectively and dramatically, in-

dicating exception-item resolution and exemplar memori-

zation. Abstraction- and exemplar-based formal models

reinforced these interpretations. The results suggest a

psychological transition in pigeon category learning from

abstraction- to exemplar-based processing similar to that

found in humans.

Categorization is a crucial cognitive adaptation for humans and

other animals. Not surprisingly, categorization is a sharp re-

search focus in both human cognition (e.g., Ashby & Maddox,

1992; Brooks, 1978; Homa, Sterling, & Trepel, 1981; Murphy,

2003) and animal cognition (Chase & Heinemann, 2001;

Herrnstein, Loveland, & Cable, 1976; Huber, 2001; Wasserman,

Kiedinger, & Bhatt, 1988). From our perspective as categori-

zation and comparative researchers (Cook, 2001; Smith, Minda,

& Washburn, 2004), it is clear that these research traditions

should share common theoretical ground, although this has

frequently not been the case.

One important issue in both traditions concerns the contri-

bution of abstraction-based and exemplar-based represen-

tations to categorization. Organisms might condense their

experiences with exemplars of a category into a summary rep-

resentation and use this derived abstraction to recognize and

classify new category members. Or organisms might maintain

the category exemplars they experience as separate, individu-

ated memories and use this collection of exemplars to categorize

new instances. The implications of these different processes are

profound. Abstraction lets the organism transfer category

knowledge to novel situations, with the possible cost that ex-

emplar information is lost. Such an abstraction mechanism

could also be neurally expensive and might evolve only with

difficulty. In contrast, exemplar memorization retains faithfully

the details of experience, with the possible costs that large ex-

emplar stores could be expensive and reduce flexible transfer to

novel situations. In this article, we argue that organisms bear the

costs of having both processes because of the different advan-

tages provided by each.

There is strong evidence for both processes in human cat-

egorization. Sometimes humans do abstract the central ten-

dencies of categories (Smith & Minda, 2001). But human

categorization is not exclusively dominated by abstraction. If it

were, humans should fail to learn categories that have exception

items. These exceptions should resist being assimilated into a

category represented by a dissimilar prototype. Yet humans can

learn such categories with difficulty (Medin & Schwanenflugel,

1981). Accordingly, researchers have come to the productive

consensus that abstraction- and exemplar-based processes ap-

ply under different circumstances, so that a mixed theoretical

perspective is preferable. Humans’ overall categorization com-
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petence contains the potential for the two processes, and the

balance between them shifts on the basis of category size,

category structure, and stage of learning (Blair & Homa, 2001;

Homa, Sterling, & Trepel, 1981; Minda & Smith, 2001; Smith &

Minda, 1998).

There is also evidence for both processes in avian categori-

zation. Pigeons can memorize large sets of specific exemplars

(Cook, Levison, Gillet, & Blaisdell, 2005; Vaughan & Greene,

1984). This capacity is seen when birds remember visual ex-

emplars and features (Aust & Huber, 2001; Edwards & Honig,

1987; Greene, 1983), auditory exemplars (Cynx, 1995; Stod-

dard, Beecher, Loesche, & Campbell, 1992), and stimulus re-

lations (Carter & Werner, 1978; Wright, 1997). But pigeons also

engage in abstract learning by forming perceptual categories

(Herrnstein et al., 1976; Huber, 2001; Wasserman et al., 1988)

and generalized relations (Cook, Katz, & Cavoto, 1997; Was-

serman et al., 1988; Wright, 1997; Young & Wasserman, 2001).

Although category size seems to be one factor determining the

balance between these processes in animals (Kendrick, Wright,

& Cook, 1990; Wright, Cook, & Kendrick, 1989), this balance

is poorly understood in animals compared with humans (Minda

& Smith, 2001; Smith & Minda, 1998). Are abstraction and

exemplar memorization simply different aspects of the same

process (Medin & Schaffer, 1978; Nosofsky, 1987), or are they

separate and distinct processes—possibly drawing on different

brain systems—as has been proposed for humans (Ashby, Al-

fonso-Reese, Turken, & Waldron, 1998)? Under what conditions

is one process or the other employed?

For humans, Smith and Minda (1998) provided part of the

answer to the last question. They showed that humans pass

through an early stage of category learning consistent with ab-

straction- but not exemplar-based processing. To do so, Smith

and Minda used categories that contained prototypes (defining

each category’s modal tendency), typical exemplars (similar to

the prototypes), and exceptions (assigned to one category, but

more similar to the opposing category). Early in learning, hu-

mans showed excellent prototype categorization but terrible

exception-item categorization. The systematic misclassification

of exceptions betrayed the participants’ use of an abstraction-

based categorization strategy. As a result, an abstraction-based

model fit every aspect of early performance better than a com-

parable exemplar-based model. Later in learning, after the ex-

ceptions had been resolved and mastered, the opposite result

emerged from the modeling—the exemplar model explained

performance better than the abstraction model did. Apparently,

secondary exemplar-memorization or exception-resolution

processes had supplemented category-level knowledge to allow

comprehensively good performance across the item types.

Smith and Minda (1998) suggested that their research could

be extended to the study of animal categorization. For example,

animals might have more primitive abstraction mechanisms

than humans, especially if abstraction is based on explicit or

verbal rules. If so, in Smith and Minda’s prototype-exception

paradigm, animals should exhibit less evidence of early ab-

straction than humans do, as animals rely predominantly on

memorizing the exemplars (see Cook, Wright, & Kendrick,

1990). Alternatively, animals might lack the exception-reso-

lution strategy that supplements human abstraction, especially

if that strategy depends on episodic memories about specific

problematic items. In this case, animals should have greater

difficulty mastering exceptions than humans do. A third possi-

bility is that mammals and birds have evolved similar cat-

egorization systems. If so, animals should show the same

temporal stages of category learning as humans do. Any of these

results would be interesting for establishing the continuities or

discontinuities between humans’ and animals’ category learn-

ing. These contrasting scenarios are discernible, however, only

if one studies the time course of category learning to reveal the

trajectory of these processes and any strategy transitions that

occur.

Accordingly, we trained pigeons on prototype-exception cat-

egories identical in structure to those of Smith and Minda (1998)

but modified for pigeons. We examined the speed of acquisition

of the prototypes, typical items, and exceptions to establish the

existence of any transitions between strategies. We supported

this search by using abstraction and exemplar models matched

in mathematical complexity and fitting flexibility. Humans were

tested with the same stimuli to replicate Smith and Minda’s prior

results. If the birds showed the same transition as humans,

across millions of years of evolutionary divergence, this result

would indicate that the progression from abstractions to exem-

plars is a fundamental principle of category learning extending

across minds and species.

METHOD

Participants

Five experienced male Silver King pigeons (Columba livia) were

tested. They had performed a motion discrimination unrelated to

the current task. They were maintained at 80 to 85% of free-

feeding weight, with free access to water and grit in their home

cages in a colony room with a 12:12 light:dark cycle.

Nine Tufts University students also participated. One was

dropped because of performance that never improved beyond

chance.

Apparatus

Pigeons were tested in a black chamber (38 � 36 � 38 cm)

controlled by a microcomputer. Stimuli were presented on a

color monitor (NEC MultiSync C500; 800 � 600 resolution)

visible through a window in the chamber’s front panel. Pecks to

the monitor were detected by an infrared LED touch screen

(Elotouch Systems, Menlo Park, CA). A ceiling houselight was

illuminated except during time-outs. Identical food hoppers

(Coulbourn #E14–10) were located in the chamber’s right and
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left walls, 3 cm from the front panel. Infrared LEDs mounted 2.5

cm in front of each hopper detected the bird’s approach and

indicated its choice of hopper. The right and left hoppers, re-

spectively, contained mixed grain and safflower. Humans were

tested individually using a microcomputer with a 17-in. monitor

(Dell, 800 � 600 resolution).

Stimulus Materials

We instantiated Smith and Minda’s (1998) category structure

using six binary-color dimensions located in fixed sectors of a

circular stimulus (Fig. 1). Pigeons and humans were randomly

assigned to one of four prototype pairs that represented different

randomizations of the colors to categories and to sectors within

categories. Each category contained a prototype, an exception

with five features in common with the opposing prototype, and

five typical stimuli with five features in common with their

prototype. This category structure defeats an abstraction-based

strategy because it will lead to miscategorization of the excep-

tion stimuli, given their similarity to the opposing prototype.

Further, each category contained complementary stimuli (Fig. 1,

rows 5 and 7) sharing no common features. Any abstraction that

allowed the correct classification of one of these stimuli guar-

anteed the incorrect classification of the other.

Pigeon Testing

A peck to a 2.5-cm white signal centrally presented on the

monitor produced a to-be-categorized item (TBCI). After 10

pecks to that item, the lights inside the choice hoppers were

illuminated. The pigeon then indicated its choice of Category 1

or 2 by entering its head into one of the hoppers. If the correct

hopper was entered, it gave access to food for 2.3 s; if the in-

correct hopper was entered, the hopper light went out, and the

houselight turned off for 5 s. A 3-s intertrial interval followed

either outcome.

Daily sessions contained 112 trials in eight 14-trial blocks

(each block containing all 14 stimuli). A correction procedure

was used in each session’s first block to prevent the development

of left/right biases. Correction trials were not analyzed. Training

continued until each bird appeared to reach asymptotic per-

formance.

Human Testing

Individual participants were tested using the same categories as

for the pigeons. They pressed the ‘‘j’’ (Category 1) or ‘‘f’’ (Cat-

egory 2) key of the computer keyboard to indicate their response

on each trial. Feedback was provided by an 8- � 3-cm box that

appeared for 3 s, replacing the categorization stimulus on the

screen; the box was green after a correct response and red after

an incorrect response. Participants received 392 trials in

twenty-eight 14-trial blocks, all in a single session. Trials were

separated by 1.5 s. Participants had unlimited time to view each

stimulus before responding. No correction procedure was em-

ployed. The general instructions were the same as in Smith and

Minda’s (1998) study.

Formal Modeling

Our modeling procedures are described elsewhere (Minda &

Smith, 2001; Smith & Minda, 2000). We used similarity-choice

exemplar and abstraction models that are influential in the lit-

erature. They calculate similarity identically and incorporate

it into the same ubiquitous choice rule. They instantiate trans-

parently the commitments of exemplar- and abstraction-based

processing so that they can be evaluated fairly. The influence,

Fig. 1. Stimuli illustrating the category structure used to test pigeons
and humans. The four sets of stimuli used had identical structure, but
different combinations of contrasting colors defining each binary di-
mension. Each category contained a prototype (top row), an exception
with five features in common with the opposing prototype (bottom row),
and five typical stimuli with five features in common with their prototype
(intervening rows). For each typical stimulus, the dimension that differed
from the prototype is listed. Exemplars within and between categories
shared 3.88 and 2.12 features, respectively, on average. Exemplars
shared 4.57 and 1.43 features on average with their own and the opposing
prototype, respectively. Stimuli took on the typical value for their cat-
egory five, five, five, six, six, and five times for Dimensions 1 through
6 (clockwise from the top).
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identical mathematics, and transparent representational as-

sumptions of these models explain their use here.

These models take as inputs the distance between TBCIs and

category representations (CRs). They transform distance into a

TBCI-CR similarity and transform similarity into a category-

endorsement level (i.e., how strongly would a TBCI that is

similar to a CR be endorsed as a member of the category?).

Our measure of TBCI-CR distance incorporated attention that

was presumed to be limited and distributed across the stimulus

dimensions. For example, given an attentional distribution of .1,

.1, .2, .2, .2, and .2, the stimuli 000000 and 001100 (0 and 1

representing different combinations of the six binary dimen-

sions) would be 0.4 (0.2 1 0.2) apart. Our measure of TBCI-CR

similarity came from mathematically inverting distance (more

distance 5 less similarity) by making similarity an exponential-

decay function of distance. A sensitivity parameter governed

this inversion:

similarity ¼ e�sensitivity � distance

Our measure of endorsement level came from entering similarity

into a choice rule with this general form:

endorsement levelcategory1 ¼ similaritycategory1=ðsimilaritycategory1

þ similaritycategory2Þ:

The exemplar and abstraction models had just one difference: In

the exemplar model, the Category 1 and Category 2 similarities

were found by comparing each TBCI with the seven Category 1

exemplars and the seven Category 2 exemplars; in the ab-

straction model, the similarities were found by comparing each

TBCI to the Category 1 and Category 2 prototypes. Because

pigeons can show response biases in discriminations, a bias

parameter was added to both models so that the category choice

rule became finally

endorsement levelcategory1 ¼ ðbias� similaritycategory1Þ=ððbias

� similaritycategory1Þ þ ðð1� biasÞ

� similaritycategory2ÞÞ:

We used standard hill-climbing methods to find the parameter

settings that let each model reproduce as well as it could a

categorization performance profile (i.e., the endorsement levels

given to 14 stimuli). We used the sum of the squared deviations

(SSDs) between the 14 observed and predicted endorsement

levels to find the best fit of the models to the observations. In

every case, we fit the models to the performance profiles of in-

dividual pigeons and humans to gain the clearest view possible

of the models’ fit to each subject’s behavior.

RESULTS

Humans

The human participants replicated the crucial results of Smith

and Minda (1998). Figure 2a shows their mean accuracy for

prototypes, typical items, and exceptions over the 28 training

blocks of their session. Their early performance (Blocks 1–4)

showed strong differences among the prototypes (90.6%), typi-

cal items (71.2%), and exceptions (31.2%). This data pattern is

consistent with the use of an abstraction that assimilates

prototypes into their correct category but miscategorizes ex-

ceptions because of their similarity to the opposing prototype.

Supporting this idea, formal modeling showed that the exemplar

model fit early performance worse than the abstraction model,

SSDs 5 1.37 and 1.11, respectively, t(31) 5 3.95, prep 5 .991,

Z2 5 .02. The upper left graph in Figure 3 shows the average

observed performance levels and the average predicted per-

formance levels for both models for prototypical, typical, and

exception stimuli. The exemplar model underpredicted proto-

type accuracy by 6.7% and severely overpredicted exception

Fig. 2. Acquisition curves for the 8 humans (a) and 5 pigeons (b). Each
graph shows the average percentage of correct responses for prototypes,
typical items, and exceptions across blocks or sessions. The bottom panel
(for pigeons) shows a backward learning curve; the individual acquisition
curves were aligned at a comparable point of mastery, and then per-
formance was averaged and plotted backward and forward from that
point (see the text for details). The dotted line represents chance per-
formance.
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accuracy by 13.0%. The character of this misfit springs from the

exemplar model’s representational assumption of storing all

items in the same way. The more sensitively this model stores

exemplars, the more sensitively it stores both prototypes and

exceptions. This tends to produce a positive correlation between

prototype and exception performance that acts against proto-

type-exception divergence. The abstraction model had smaller

prediction errors that showed an opposite pattern reflecting the

model’s representational assumption. It overpredicted prototype

accuracy by 1.0% and underpredicted exception accuracy by

3.7%. As this model enters configurations in which it stores

category information more sensitively, it categorizes prototypes

more accurately, but exceptions less so. This tends to produce a

negative correlation between prototype and exception per-

formance.

During the latter blocks of learning, as shown in Figure 2a,

exception accuracy improved steadily for the humans. As a re-

sult, the lower left panel of Figure 3 shows a different pattern of

fits for late in human category learning (Blocks 25–28). Par-

ticipants were 96.9%, 91.9%, and 84.4% correct on the proto-

types, typical items, and exceptions, respectively,. Exception

accuracy had improved by 53%. This pattern is consistent

with secondary exemplar-memorization or exception-resolution

processes that treated exceptions appropriately despite their

inconsistency with their categories’ abstract structure. The ex-

emplar model now performed better than the abstraction model,

SSDs 5 0.42 and 0.91, respectively, t(31) 5�5.11, prep 5 .998,

Z2 5 .14. Moreover, the abstraction model’s misfit had the ex-

pected character. It underpredicted exception accuracy by

36.3%. The abstraction mechanism in this model could not

overcome the similarity of exceptions to the opposing prototype

and categorize them as accurately as humans did.

Pigeons

The pigeons learned more slowly than the humans, requiring

many sessions rather than one. Nevertheless, they showed an

analogous pattern during acquisition. Although the individual

birds differed in their learning rates, they all learned the

prototypes most quickly, followed by the typical items, with the

exceptions far behind. In an analysis of variance over the first 15

sessions of training, there was a significant Item Type� Session

interaction, F(28, 112) 5 2.68, prep 5 .997, Z2 5 .39.

To accommodate the individual differences in learning rate

among the pigeons, we generated backward learning curves

(Byrne et al., 1991; Smith et al., 2004; Smith, Tracy, & Murray,

1993; Zeaman & House, 1963). This procedure let us align the

acquisition curves at a comparable point of mastery and work

Fig. 3. Humans’ and pigeons’ observed and predicted accuracy for prototypes, typical items,
and exceptions during the early (top panels) and late (bottom panels) stages of learning. The
definitions of early and late differed between species (see the text for details). Predictions for
the exemplar model and the abstraction model are shown.
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backward and forward from there to determine the trajectory of

learning. We defined the mastery point as the first session with

100% prototype accuracy (for 1 pigeon this criterion was relaxed

to two consecutive sessions with 93.8% accuracy). Sessions

were numbered backward and forward from this ‘‘Session 0.’’

Figure 2b shows the pigeons’ average backward learning

curves for prototypical, typical, and exception stimuli. Early in

learning, accuracy on prototypes and typical items improved,

while exception accuracy remained below chance. This pro-

duced strongly heterogeneous performance in the sessions sur-

rounding Session 0 (Sessions �2 to 12). During this period,

performance on prototypes, typical items, and exceptions

averaged 87.5%, 77.5%, and 33.0% correct, respectively. As

noted in the discussion of human performance, this pattern is

consistent with the use of an abstraction that assimilates

prototypes into categories but misclassifies exceptions because

of their similarity to the opposing prototype.

Modeling supported this interpretation. The upper right panel

of Figure 3 shows the average observed and predicted per-

formance levels for prototypes, typical items, and exception

items during these five sessions. The exemplar model performed

worse than the abstraction model, SSDs 5 0.1865 and 0.1280,

respectively, t(24) 5 3.05, prep 5 .964, Z2 5 .09. The exemplar

model underpredicted participants’ prototype accuracy (by 5.5%),

but severely overpredicted participants’ exception accuracy (by

9.5%). The abstraction model had smaller errors and the op-

posite error regarding exceptions. It mispredicted prototype

accuracy by only 0.3% and underpredicted exception accuracy

by only 3.5%. Once again, the abstraction model was a better fit

with divergent prototype-exception performance.

Figure 2b shows that subsequent to this period, exception

accuracy improved selectively. Late in learning (each bird’s last

five sessions), performance was generally more homogeneous

across item types. The birds were 92.2%, 89.9%, and 72.8%

correct on prototypes, typical items, and exceptions, respec-

tively. Exception performance had improved 40% compared

with the first five sessions. Now the exemplar model outper-

formed the abstraction model, SSDs 5 0.060 and 0.485, re-

spectively, t(24) 5�5.79, prep 5 .999,Z2 5 .46. The lower right

panel of Figure 3 shows that the abstraction model underpre-

dicted exception accuracy by 28.3% because it could not

overcome the similarity of exceptions to the opposing prototype

and categorize them accurately, as the pigeons generally did.

GENERAL DISCUSSION

These data show a striking similarity between pigeons and hu-

mans in the acquisition of a prototype-exception task. Both

species learned the prototypes and typical items more quickly

than the exceptions and were below chance with the exceptions

early in learning. This pattern suggests the use of an abstraction-

based representation during this stage. Later, exception accu-

racy improved in both species, a pattern consistent with the

eventual deployment of a secondary exemplar-memorization

process. The modeling of each species’ data strongly supported

these conclusions.

Figure 4 shows the pigeons’ prototype and exception per-

formance across sessions, overlain on the universe of perfor-

mances (gray areas) producible by the exemplar and abstraction

models. Early on, as prototype and exception performance di-

verged, performance entered a region of performance space that

no configuration of the exemplar model occupies. The exemplar

model’s failure is qualitative at this point of learning near Ses-

sion 0. It cannot predict such divergence between prototype and

exception performance. The abstraction model can; because of

its representational assumption, this divergence is just what it

predicts.

The pigeons turned a corner at Session 0, and entered a region

of performance space that is qualitatively denied the abstraction

model. Clearly, some secondary strategy resolved the excep-

tions. Possibly the pigeons memorized the aberrant members or

began to code multiple stimulus features more configurally.

Exemplar storage and configural representations are two key

features of the exemplar model.

Overall, these results suggest an important cross-species

similarity in the time course of the basic processes serving

category learning. The similarity across millions of years of

evolutionary divergence is striking and contributes to the gen-

eral and comparative categorization literature in several ways.

First, it suggests that either these general processes are evolu-

tionarily old or similar solutions to category learning have

evolved independently in these distinct phylogenetic lineages.

Second, it shows the value of looking at the time course of

acquisition in categorization studies. Much categorization re-

search focuses only on asymptotic performance after learning is

completed. This approach does not show the first principles or

Fig. 4. Pigeons’ average prototype- and exception-item performance by
aligned session, overlain on the results of 10,608 configurations of the
exemplar model (a) and abstraction model (b). To make these configu-
rations, the six attentional parameters were systematically varied from 0
to 1.0 in .05 steps (with the constraint that the six parameters sum to 1.0).
Then, for each attentional profile, a random bias and sensitivity pa-
rameter were selected (from the ranges of 0–1.0 and 0–20.0, respectively),
and the prototype and exception performance for that configuration of
the model was calculated.
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initial assumptions of category learning—extensive training

paves these over. Moreover, looking only at terminal perfor-

mance may unduly emphasize exemplar processes, because, as

we have shown here, these will likely be strongest at the end of

learning. Thus, analyzing the stages of category learning and

the succession of strategies will be productive in comparative

studies for the same reason it is productive in human studies.

Third, our results show the value of a mixed theoretical per-

spective that permits behavior to be determined by different

categorization systems operating at different times. This per-

spective has enriched the human literature by moving it beyond

forcing one process to explain all categorization behavior. In the

comparative literature, too, some researchers have preferred a

linear feature model allied to our abstraction model (Huber,

2001), whereas others have preferred a configural model allied

to our exemplar model (Astley & Wasserman, 1992; Chase &

Heinemann, 2001; Pearce, 1994). In our view, both perspectives

will figure prominently in explaining fully animals’ categoriza-

tion behavior. Here we explored for the first time the changing

balance of these processes across stages of learning. One could

also explore the changing balance across category structures.

For instance, categories that have few members or weak within-

category similarity would probably shift animals toward exem-

plar processing, just as they shift humans (Blair & Homa, 2001;

Homa et al., 1981; Smith & Minda, 1998).

Fourth, these results join Smith and Minda’s (1998) to confer

species generality on the claim that there is a progression in

category learning from abstraction to exemplar-based processes.

Although similar suggestions have been made in the human

literature (Reed, 1978), this progression has not been as

prominent in the animal literature. Cook et al. (1990) hy-

pothesized that pigeons first memorize exemplars, then later

derive abstractions from these items. This hypothesis was not

supported by the present study. In a study more consistent with

our results, Wasserman et al. (1988) tested pigeons’ learning of

subcategories of basic objects and found that learning moved

from abstraction to exemplar memorization. The generality of

this strategy transition has an important implication about how

minds learn categories. Evidently, the basic approach or the

initial stance is to first detect, recognize, and abstract the

common features of a category. Evidently, the processes that

focus on specific exemplars and master exceptions are sec-

ondary, subsequent, and possibly invoked only on demand of the

error signals from recurrent problematic stimuli. We note,

though, that different species could show variations on this

general progression or particular biases more toward abstrac-

tion-based or exemplar-based processing. Such variations could

produce important differences across species. For example,

human language might quicken, sharpen, or strengthen the

abstraction phase of category learning. Also, pigeons probably

have important strengths in exemplar memorization that they

may deploy quickly in some categorization tasks (Cook et al.,

2005).

We should point out that to use abstractions, animals do not

need a cognitively sophisticated abstraction device. This as-

sumed sophistication is sometimes used as a philosophical ob-

jection to abstraction in animals. Any mechanism that

accumulates cue or response strength in parallel over dimen-

sions would yield the observed initial responses to the cat-

egories’ central tendencies. Of course, such a simple abstraction

mechanism would fail to learn exceptions, exactly as established

here. Another point in favor of early abstraction is that

the categories’ abstractive tendencies are experienced and

reinforced on almost every trial—far more frequently than

are the category exceptions. Arguments like these explain why

it could be the episodic memory for problematic exceptions

and the behavioral solutions for them that need to be cognitively

sophisticated. Perhaps this is why exemplar processes tend to be

secondary and subsequent in categorization tasks.

Fifth, the initial stance toward abstraction may betray a de-

fault assumption that organisms use in processing collections of

items. This assumption is that categories are perceptually co-

herent and well organized in family-resemblance terms. It is for

these ubiquitous categories that abstraction works reliably and

completely. The evolution of this processing assumption likely

reflects the category structure that the natural ecology often

presents to animals. Thinking as a pigeon for the moment,

consider that the categories of mates, seeds, grit, hawks, snakes,

trees, and so forth all have coherent perceptual organizations.

As a result, an organism could safely use abstraction for these

categories and gain cognitive economy from it by not needing to

learn and retain potentially large numbers of exemplars. So we

are interested in the possibility that the default abstractive

stance in category learning stems from an affordance of the

natural kinds that organisms have experienced during their

cognitive evolution. Of course, organisms may also need an

exception memorizer or resolver. But this perspective helps

explain why this mechanism might be secondary to abstraction

during learning.

Much remains to be discovered about the character of hu-

mans’ and animals’ categorization processes. In the human lit-

erature, these questions are being explored from the perspective

of cognitive neuroscience and the brain systems underlying

different processes (Ashby et al., 1998; Ashby & Ell, 2001).

Similar characterizing and localizing questions could be asked

about animals’ abstraction and exemplar processes. Indeed, it

will be interesting to consider the systems that let animals focus

on different aspects of categories at different stages of learning

and to ask whether there are structural analogies in the brain

regions or architectures that support these different processes in

animals and humans.
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