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Are separate theories of conditioning and timing necessary?

Kimberly Kirkpatrick *, Russell M. Church

Department of Psychology, Brown Uni6ersity, Pro6idence, RI 02912, USA

Received 30 March 1998; received in revised form 18 August 1998; accepted 28 August 1998

Abstract

Conditioning and timing studies have evolved under separate traditions, which is exemplified in both traditional
theories (e.g. the Rescorla–Wagner model of conditioning vs. Scalar Timing Theory) and in a dual process model
(Gibbon, J., Balsam, P., 1981. In: Autoshaping and Conditioning Theory. Academic Press, New York.). Other lines
of theoretical development in both timing and conditioning fields have resulted in the emergence of ‘hybrid’ theories
in which conditioning and timing processes are integrated. Simulations were conducted with a recent hybrid theory
of timing (Machado, A., 1997. Psychol. Rev. 104, 241–265). The simulations were of classical conditioning
procedures in which the local or global predictability of food was varied by manipulating the variability of the
CS–US relationship, variability of the CS duration, and variability of the intertrial interval. The hybrid model
provided good qualitative fits to indices of conditioning (discrimination ratios) and timing (local rates of responding),
indicating that it may be possible to model both conditioning and timing results with a single process in which an
internal representation of time and a strength of association are integrated. However, the failure of the model to
provide good quantitative fits of the data indicates the need for a consideration of alternative perceptual representa-
tions of time and/or principles of association within the framework of the hybrid model. © 1998 Published by Elsevier
Science B.V. All rights reserved.
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1. Introduction

Conditioning and timing studies have devel-
oped quite separately. They differ in the indepen-
dent variables investigated, in the intervening

variables that are assumed, and in the dependent
variables that are measured. For example, in con-
ditioning, the CS–US contingency may be used as
an independent variable; in timing, stimulus dura-
tion may be used as an independent variable. In
conditioning, associative strength may be used as
an intervening variable; in timing, remembered
duration may be used as an intervening variable.* Corresponding author. Tel.: +1 401 8633979; fax: +1

401 8631300; e-mail: kim–kirkpatrick@brown.edu
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In conditioning, CR magnitude may be used as a
dependent variable; in timing, the times of re-
sponses may be used as a dependent variable.
Although these differences appear to be substan-
tial, it is possible that none of the apparent differ-
ences are fundamental.

A standard timing experiment may be described
in the following way: a signal (e.g. keylight) is
turned on; at some fixed duration after signal
onset (e.g. 15 s), food is made available; the first
response following the time of food availability
results in both food delivery and signal termina-
tion; an intertrial interval of a long and variable
duration intervenes between the previous food
presentation and the next signal onset. This series
of events, known as the discrete-trials fixed inter-
val procedure, normally results in an increasing
rate of responding as a function of time since
signal onset, with a maximum response rate oc-
curring near the time when food is available.

A standard conditioning experiment may be
described in the following way: a signal (e.g.
keylight) is turned on; at some fixed duration
after signal onset (e.g. 15 s), food is delivered and
the signal is terminated; an intertrial interval of a
long and variable duration intervenes between the
previous food presentation and the next signal
onset. This series of events, known as a delay
conditioning procedure, normally results in
growth in the strength or probability of respond-
ing during the signal as a function of some
amount of training.

These two procedures differ in only one way—
the operant response contingency. Specifically, in
the timing procedure, food was delivered contin-
gent on a response from the animal after a partic-
ular amount of time had passed. In the
conditioning procedure, food was delivered con-
tingent only on the amount of time that had
passed since signal onset. Although the response
contingency is not a trivial difference, similar
aspects of the two procedures may be learned (e.g.
the onset of a signal predicts that food will occur
in 15 s; see, for example, Dickinson and Mackin-
tosh, 1978; Dickinson, 1980).

In fact, evidence from both classical and instru-
mental procedures indicates that the general prin-
ciples of response timing are similar. For example,

in both cases, responses are maximally likely near
the time of reinforcement; this is the ‘inhibition of
delay’ phenomenon described by Pavlov (1927).
Additionally, responses engendered by both clas-
sical (e.g. Killeen et al., 1978) and instrumental
(e.g. Church et al., 1994) procedures are scalar in
nature.

Given that timing and conditioning procedures
are so similar and that the data generated by the
two procedures share many common features, it
seems plausible that the same process may be
involved in generating responses. In fact, timing
accounts have been used to explain autoshaped
keypecking behavior evoked by classical proce-
dures (Durlach, 1989). These theoretical explana-
tions have incorporated the notion that
conditioned responding is a function of the com-
parison of waiting times until food during the CS
versus during the background (Gibbon and Bal-
sam, 1981; Jenkins et al., 1981). Although tempo-
ral content is proposed to play a role in
conditioning, these accounts do not produce
timed responses; their output is associative (re-
sponse) strength.

In the preponderance of animal learning stud-
ies, conditioning and timing still continue to re-
ceive separate treatment (see Holder and Roberts,
1985; Cole et al., 1995; Barnet and Miller, 1996;
Barnet et al., 1997 for exceptions), which has
resulted in the emergence of dominant theories of
conditioning and timing that have little relation-
ship to one another.

An excellent example of a conditioning theory
is the Rescorla–Wagner model (Rescorla and
Wagner, 1972), which states that reinforcement
leads to a change in associative strength of each
stimulus i, DVi that is proportional to the dis-
crepancy between the strength of the US (l) on
the present trial and the expected strength of the
US (Y, the sum of the associative strength of the
stimuli that are present on the current trial). That
is, DVi=b(l−Y) aiXi, with ai a constant for the
salience of each stimulus, b a constant for the
salience of the US, Xi indicating the presence
(Xi=1) or absence (Xi=0) of stimulus i, and
Y=S(Vi ·Xi). Under conditions of positive rein-
forcement, l is set to a positive value, usually 1,
with nonreinforcement set to 0, and with negative
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reinforcement set to a negative value. Vi can be
either positive (excitatory conditioning) or nega-
tive (inhibitory conditioning). With the addition
of a rule to translate strengths of association into
observable response measures, it is possible to
make predictions about the average rate (or prob-
ability) of responding in the presence of different
stimulus configurations. Typically, however, it is
only assumed that responding relates ordinally to
the strength of association.

An excellent example of a timing theory is
Scalar Timing Theory, which contains three inter-
related modules (Gibbon et al., 1984). The first
module is referred to as the clock/accumulator
process, and it provides the perceptual representa-
tion of a duration. At the onset of the event that
begins the timing process, a switch closes (with
some variable latency), and pulses from a pace-
maker reach an accumulator. The switch opens
(with some variable latency) at a second time
marker (such as stimulus termination or reinforce-
ment). The sum of the pulses in the accumulator
serves as the perceptual representation of time.
The second module is a reference memory, and it
provides the memory of previously reinforced du-
rations. At the time that an animal receives rein-
forcement the number of pulses in the
accumulator is transferred to reference memory,
perhaps with a variable memory storage constant.
Temporal memory consists of a distribution of
these remembered durations—it is an examplar
memory. The third module is a comparator; it
provides the basis for a decision among responses
(including whether or not to respond). The com-
parison is between a representation of current
time (from the first module) and a random sample
of a single remembered time (from the second
module); the comparison is done with a ratio rule
rather than a difference rule. With estimates of
the parameters representing various sources of
variance in perception, memory, and decision pro-
cesses, it is possible to make predictions about
when responses will occur.

The Rescorla–Wagner model and Scalar Tim-
ing Theory differ along several dimensions. First,
they differ in what is perceived by the model (or
animal). The Rescorla–Wagner model perceives
states which identify which stimuli (contextual

stimuli, CSs, and USs) are present. In contrast,
Scalar Timing Theory perceives events, which are
changes in the status of a stimulus (e.g. a light
went on, a tone went off, food occurred); these
events serve to start, reset, or stop the clock. A
second difference is the learning mechanism. The
Rescorla–Wagner model contains a conditioning
mechanism that results in a change in the strength
of association as a function of the present state.
Scalar Timing Theory contains a timing mecha-
nism that records the passage of time between
events (signal to reinforcer, reinforcer to rein-
forcer) in reference memory. A third difference is
the decision process or output of the model/ani-
mal. The Rescorla–Wagner model’s output is a
decision of whether or not a response will be
made in the presence of a particular state. Scalar
Timing Theory’s output is a decision of when
responses will be initiated relative to an event.
Thus, in their original forms, these two models
are restricted to their respective domains. The
Rescorla–Wagner model cannot perceive, encode,
store, or respond to temporal intervals because
there is no timing mechanism. Scalar Timing The-
ory has no principled rules for determining which
stimuli will be timed, so it cannot model stimulus
selection phenomena such as blocking and over-
shadowing because there is no conditioning mech-
anism.

In the conditioning literature, a change in re-
sponse strength as a function of training is the
primary index of conditioning. Indices of response
strength include absolute and relative response
rates, probabilities of responding, the amplitude
of a response, and the speed of a response. In the
timing literature, response timing measures such
as local rates of responding as a function of time
since some event, or characterizations of the times
of individual response bursts are the primary in-
dices of timing. Although a conditioning theory
and a timing theory may be used to explain the
behavior produced by some of the same proce-
dures, they are used to explain different aspects of
that behavior. A conditioning theory is used to
explain the average or relative response tendency
in the presence of a stimulus configuration; a
timing theory is used to explain the time of occur-
rence of the responses.
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Animals produce individual responses at partic-
ular times. The response stream generated by an
animal may be complex in structure, possessing
many different attributes that can be assessed
with many different dependent measures. For ex-
ample, in research on animal timing, it has been
observed that responses on a fixed interval sched-
ule occur in a break-run pattern, with a burst of
responding near the anticipated time of reinforce-
ment (e.g. Schneider, 1969; Gibbon and Church,
1990). Many different measures may be used in
developing an explanation of the response bursts,
such as the overall rate of responding within a
burst, the beginning and end times of the burst,
the pattern of responding within a burst (e.g.
steady vs. increasing rate), and the periodicity
between response bursts. Each of these different
dependent measures may be separately influenced
by different experimental operations, or they may
covary. Thus, in order to adequately understand
the nature of the response stream, one needs to
examine several different measures. Any theory
that restricts its domain to a single response mea-
sure (e.g. the Rescorla–Wagner model only gener-
ates an overall strength in each state) will be
unable to account for the complexity of behavior
that is produced under various experimental ma-
nipulations.

The real-time theories of conditioning (e.g. Sut-
ton and Barto, 1981, 1990; Blazis et al., 1986;
Moore et al., 1986; Tesauro, 1986; Klopf, 1988;
Moore and Desmond, 1992) are more recent ex-
tensions of the Rescorla–Wagner model that can
generate timed responses as well as changes in
overall response strength. The Sutton and Barto
(1981) real-time model was a direct extension of
the Rescorla–Wagner model that incorporated
two changes: (1) the value of Vi was updated at
every time step both within and between trials, as
opposed to the Rescorla–Wagner model that only
updated after every trial; and (2) the presence or
absence of a stimulus (Xi) was replaced by a
graded eligibility trace that increased during the
CS and decreased after CS termination. With the
addition of an eligibility trace (i.e. a clock), the
Sutton and Barto real time model produced re-
sponses in real time as well as accommodating
many of the effects of temporal variables in condi-

tioning (e.g. CS–US interval effects, trace condi-
tioning). This model and other real-time models
are ‘hybrid’ theories because the timing and con-
ditioning mechanisms are integrated to produce
the ultimate output of the system.

Hybrid theories have emerged in the timing
literature as well: two examples are the Multiple
Oscillator Model (Church and Broadbent, 1990)
and a recent version of Behavioral Theory of
Timing (Machado, 1997). These models are exten-
sions of earlier timing theories (Scalar Timing
Theory and Behavioral Theory of Timing) that
have incorporated a strength of association along
with a time-keeping device. Although they have
arisen to account for different types of data from
different kinds of experiments, the real-time con-
ditioning models and hybrid timing models have
converged on a similar solution—an integration
of timing and conditioning mechanisms.

The purpose of the present experiment was to
determine whether a hybrid timing theory,
Machado’s (1997) variant of behavioral theory of
timing, could explain the effects of variability of
the stimulus-food relationship, variability of the
stimulus duration, and variability of intertrial in-
terval on both response strength and response
timing measures of performance. These particular
manipulations were chosen because it was ex-
pected that they would produce different effects
on the conditioning (response strength) and tim-
ing (response timing) measures of performance.

One of the most basic facts of conditioning is
that when a CS is followed by a US (delay
conditioning), acquisition of responding occurs
(Pavlov, 1927). Because most delay conditioning
studies involve a fixed duration CS that is fol-
lowed immediately by the US, it is possible for
timing of the US to occur. So, it is possible to
observe both timing and conditioning of the CS
(e.g. inhibition of delay; Pavlov, 1927). On the
other hand, when the CS and US presentations
are uncorrelated (truly random control), no con-
ditioning occurs (Rescorla, 1967). Moreover, be-
cause the US occurs at random times in the CS,
timing of the US should not occur. So, in a truly
random control, neither conditioning or timing
should occur. Thus, the standard comparison be-
tween delay conditioning and random control
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groups does not allow for a separate assessment
of the role of conditioning and timing in the
production of CRs.

In order to disentangle the influences of condi-
tioning and timing on responding in a delay con-
ditioning procedure, one can contrast conditions
in which timing may or may not occur, without
any effects on the degree of conditioning. This
may be done by comparing the effects of a fixed
and a variable duration CS. With a variable dura-
tion CS (in a delay conditioning paradigm), con-
ditioning should occur to a similar degree as with
a fixed duration CS (Kamin, 1960; Libby and
Church, 1975). However, because a variable dura-
tion CS does not predict the time of occurrence of
the US, timing should not occur during the CS
(Libby and Church, 1975). Thus, the use of a
fixed vs. a random duration CS allows for a
comparison of conditions in which timing should
(fixed duration CS) or should not occur (random
duration CS), but the degree of conditioning is
unaffected.

Another approach is to assess the influence of
timing on responding, separate from the influence
of conditioning. This may be done by contrasting
the effects of fixed and random intertrial interval
(ITI) durations in a delay conditioning paradigm
in which the CS is a variable duration. When the
ITI is fixed, then anticipation of the upcoming US
can occur, with responses timed relative to the
prior US (temporal conditioning; Pavlov, 1927).
When the ITI is random, then no temporal condi-
tioning should occur in the ITI. Supposedly, the
degree of conditioning to the CS is unaffected by
the degree of variability of the ITI (Gibbon et al.,
1977). Moreover, with a variable duration CS,
timing should not occur during the CS, only
during the ITI (when the ITI is fixed). So, the
comparison of fixed and random ITI allows for
an examination of timing, independent of the level
of conditioning that may occur to the CS.

2. Materials and methods

2.1. Animals

Thirty-two male Sprague Dawley rats (Taconic

Laboratory, Germantown, NY), age 61–64 days
at the beginning of the experiment were housed
individually in a colony room on a 12:12 light–
dark cycle (lights off at 08:45 h). Dim red lights
provided illumination in the colony room and the
testing room. The rats were fed a total daily
ration of 15 g consisting of 45-mg Noyes pellets
(Improved Formula A) that were delivered during
the experimental session and additional PM1 For-
muLab 5008 food that was given in the home cage
shortly following the daily sessions. Water was
available ad libitum in both the home cages and
experimental chambers.

2.2. Apparatus

Twelve chambers (internal dimensions: 25×
30×30 cm), each located inside of a ventilated,
noise-attenuating box (74×38×60 cm), com-
prised the experimental apparatus. Each chamber
was equipped with a food cup, a water bottle, and
a speaker. A magazine pellet dispenser (Med As-
sociates, Model ENV-203) delivered 45-mg Noyes
(Improved Formula A) pellets into the food cup.
Each head entry into the food cup was transduced
by a LED-photocell. The water bottle was
mounted outside the chamber; water was avail-
able through a tube that protruded through a hole
in the back wall of the chamber. The speaker for
delivering white noise was above and to the left of
the water tube. Two Gateway 486 DX2/66 com-
puters running the Med-PC Medstate Notation
Version 2.0 (Tatham and Zurn, 1989) controlled
experimental events and recorded the time at
which events occurred with 10-ms resolution.

2.3. Procedure

Four procedures, diagrammed in Fig. 1, were
delivered to four different groups of rats (n=8).
Each procedure contains two events: a CS (a 70
dB white noise) and a US (one 45-mg Noyes food
pellet). Each procedure is characterized by two
time-event lines, one for the delivery of the CS
(upper time-event line) and one for the delivery of
the US (lower time-event line). For each proce-
dure, the time of occurrence of the CS is indicated
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by a striped bar and the time of occurrence of the
US is indicated by a dark bar. Because the CS
duration in some procedures was variable, the
striped bars are sometimes of different widths.
The time between successive events (CS onset to
CS termination, CS termination to next CS onset,
and US to US) is indicated on each time-event
line. For all of the time intervals in the figure, a
tilde denotes that the interval was an exponen-
tially distributed random waiting time; intervals
without a tilde were of fixed duration. Sometimes,
intervals were obtained by combining a random
waiting time and a fixed time. For example, �
75+15 s (see Procedure 1) indicates that the
interval was a random waiting time with a mean
of 75 s added to a fixed time of 15 s. The random
75 s portion of the interval would have an ex-
pected mean of 75 s, an expected median of 52 s,
and, given a large sample, an expected range
(comprising 99% of the possible waiting times) of
0.38–397.37 s (Evans et al., 1993).

Procedure 1 was a control procedure in which
the CS and US were delivered independently of
one another. The CS was a fixed duration of 15 s,
the interval between the termination of one CS
and the onset of the next CS was a random
waiting time with a mean of 75 s (�75 s), and the
US to US interval was �75+15 s. Procedure 2
was a standard delay conditioning procedure in
which the US always occurred at the time of CS
termination and the CS was 15 s in duration.
Thus, Procedures 1 and 2 differed only in the
arrangement of food—in Procedure 1 food was at
random with respect to CS delivery, whereas in
Procedure 2 food always occurred at the end of
the CS. Procedure 3 was the same as Procedure 2
except that the duration of the CS was a random
waiting time (�15 s) rather than a fixed duration
(15 s). Procedure 4 was the same as Procedure 3
except that the duration between the termination
of one CS and the onset of the next CS was fixed
75 s instead of a random waiting time (�75 s).
So, the successive pairs of procedures (Procedure
1 vs. Procedure 2, Procedure 2 vs. Procedure 3,
Procedure 3 vs. Procedure 4) differed from one
another in only one aspect. Procedures 1 and 2
were delivered for 10 daily sessions lasting 2 h

Fig. 1. A diagram of the four procedures that were delivered
to separate groups of rats. Each procedural diagram contains
two time-event lines, one for the delivery of signals (CSs) and
one for the delivery of reinforcers (USs). The CS is denoted by
a striped bar and its duration is indicated above the bar. The
US is denoted by a dark bar. The duration between successive
signals or reinforcers is indicated on the time-event line.
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each; Procedures 3 and 4 were delivered for six
daily 2-h sessions. The conditioned response that
was measured was the head-in-magazine response.

2.4. Data analysis

Both a ‘response strength’ and a ‘response tim-
ing’ measure were examined. The response
strength measure was a discrimination ratio. The
numerator of the ratio was the response rate in
the CS (responses/min) which was obtained by
summing the total responses that occurred during
the CS and dividing by the total number of min-
utes of the CS in each session. The denominator
of the ratio was the sum of the response rates in
the CS and non-CS (ITI) periods. The response
rate in the ITI was obtained by totaling the
responses that occurred in the non-CS period and
dividing by the total number of minutes of the
non-CS period in each session.

The response timing measure was the local rate
(responses/min) of responding as a function of
time since CS onset. Responses were examined in
each 1-s interval from one CS onset to the next
CS onset. The time of occurrence of each response
was calculated relative to the time of the preced-
ing CS onset. The number of occurrences of each
of these CS–CS intervals (opportunities) was also
calculated. The ratio of number of responses in
each interval to the number of opportunities in
each interval, multiplied by 60, is the responses
per minute as a function of time since the previ-
ous CS.

Statistical analyses were conducted using two-
tailed t-tests, with a preset alpha level of 0.01.

3. Results and discussion of empirical data

3.1. Food at end 6ersus food at random

The first comparison, displayed in Fig. 2, was
between Procedures 1 and 2. The procedures dif-
fered only with regard to whether food was at the
end of the CS (Procedure 2) or at random times
with respect to the delivery of the CS (Procedure
1). In Procedure 1, the expected time to food was
independent of the occurrence of the CS; in Pro-

Fig. 2. A comparison of the effects of delivery of food at the
end of the signal (Procedure 2) or with food at random times
(Procedure 1). The top panel displays the discrimination ratios
for the two conditions, averaged over the last half of training.
The bottom panel displays the mean head entries per minute
as a function of time since signal onset for the two conditions.
The time of signal termination (15 s) is indicated by a break in
the functions.

cedure 2, the expected time of food was 15 s after
CS onset.

In Fig. 2, and subsequent results figures, the
top panel displays the discrimination ratio and the
bottom panel displays the local response rate
functions; both dependent measures were ob-
tained at steady state (the last half of training).
The discrimination ratio revealed that food deliv-
ered at the end of the CS resulted in significantly
greater responding to the CS (relative to respond-
ing in the non-CS period) than delivering food at
random (t(14)=10.7). This is the typical result
when delay conditioning procedures (Procedure 2)
are contrasted against control procedures (Proce-
dure 1).
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The local response rate measure revealed that
when food was delivered at random with respect
to the CS, the response rates were fairly constant
across the CS and non-CS periods. When food
was delivered at the end of the CS, there was an
increasing response rate function that peaked
shortly before the time of food delivery and de-
creased after food delivery. A linear function was
fit to the normalized response rate functions (the
proportion of the maximal rate) during the CS
and revealed a significant difference between the
slopes in the two conditions [t(14)=5.4]. The
slopes in the food at end condition averaged
+0.079, whereas the slopes in the food at random
condition averaged −0.009. Thus, the temporal
gradients reveal that rats in the food at end
procedure learned to: (1) respond more during the
CS than during the non-CS period, which is cap-
tured by the discrimination ratios; and (2) re-
spond more late in the CS near the time of
upcoming food than early in the CS when the
upcoming food delivery is temporally remote,
which is captured by the shape of the local re-
sponse rate functions.

3.2. Fixed 6ersus random CS duration

Fig. 3 displays the comparison between a fixed
duration CS (Procedure 2) and a random dura-
tion CS (Procedure 3) in appetitive conditioning.
Because the mean CS–US and US–US intervals
were the same, the presence of the CS (vs. the
background) was equally predictive of food in the
two groups. But, the local predictability of food
differed between the procedures. In the fixed du-
ration CS procedure, the CS not only predicted
that food would occur, but also predicted that
food would occur 15 s after the onset of the CS.
In the random duration CS procedure, the CS
only predicted that food would occur, but the
time since CS onset provided no information re-
garding the actual time of food delivery.

As the discrimination ratios in Fig. 3 show, the
fixed and random duration CSs were discrimi-
nated at a high level, indicating that both fixed
and random CS durations were capable of sup-
porting high levels of conditioning. The two pro-
cedures were not statistically different at the

preset alpha level of 0.01 (t(14)=2.2). Because
the confidence intervals were very small in both
groups, the small mean difference did yield a
t-value that would have passed at an alpha level
of 0.05.

An examination of the local response rates
revealed a profound difference between the two
conditions. The fixed duration CS resulted in an
increase in the response rate during the CS. The
random duration CS resulted in a sharp increase 1
s after CS onset followed by a decline in respond-
ing, and then a relatively constant rate of re-
sponding (the response rate remained relatively

Fig. 3. A comparison of fixed (Procedure 2) and random CS
durations (Procedure 3). The top panel displays the discrimi-
nation ratios for the two conditions, averaged over the last
half of training. The bottom panel displays the mean head
entries per minute as a function of time since signal onset for
the two conditions. The time of signal termination in the fixed
duration (15 s) and the average time of signal termination in
the random duration (15 s) is indicated by a break in the
functions.
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constant during the CS beyond the mean of 15
s—data not shown). A linear fit of the normalized
local response rate functions for each rat revealed
that the slope of the best-fitting line was signifi-
cantly more positive in the fixed CS condition
than in the random CS condition (t(14)=5.0). In
summary, although the discrimination ratios re-
vealed only a subtle difference between fixed and
random duration CSs, the temporal gradients
were clearly different in form. The differences in
the form of the gradients are consistent with those
reported by Libby and Church (1975).

3.3. Fixed 6ersus random ITI

A comparison of the discrimination ratios in
the fixed and random ITI conditions, revealed no
statistical difference (t(14)= −0.3); robust levels
of conditioning were evident in both conditions.
So, much like the CS variability results, the vari-
ability of the ITI did not have an appreciable
effect on discrimination accuracy.

The local response rate functions did, however,
reveal a substantial difference between the condi-
tions. The most striking difference was in the
non-CS period. The random group produced a
relatively constant response rate from 30 to 90 s
after signal onset, with a mean of around ten head
entries/min; the mean slope of the best-fitting
straight line was 0.000 over this observation pe-
riod. On the other hand, the fixed group produced
an increasing response rate function over the same
observation interval; the mean slope of the best-
fitting straight line was +0.010. There was a
significant difference in the slopes of the best
linear fits between the conditions (t(14)=6.7).
The increasing response rate in the fixed group is
indicative of temporal anticipation of the next
reinforcer (see Church et al., 1991 for a similar
result in a peak procedure).

3.4. Summary of results

The paired comparisons of the four procedures
revealed that the discrimination ratios reflected
variations in the global, relative rate of food
delivery in the CS and non-CS periods. When
there was a difference in global predictability

(food at end vs. food at random), then the dis-
crimination ratios were different, and when there
were no differences in global predictability (fixed
vs. random duration CS, fixed vs. random dura-
tion ITI), then the discrimination ratios were sim-
ilarly high.

The local response rate functions, on the other
hand, reflected both local and global predictabil-
ity. The shape of the local response rate functions
revealed differences in the local predictability of
food. For example, response rates increased dur-
ing the CS (or ITI) when the CS (or ITI) was fixed
in duration. The local rate functions also dis-
closed the effect of global predictability: the rela-
tive height of the function in the CS and non-CS
periods provided the same index as the discrimi-
nation ratios. So, if any theory of timing or
conditioning could adequately recreate the local
rate functions, then the discrimination ratios
would automatically be reproducible.

The overall pattern of results, with global pre-
dictability of food affecting the global distribution
of responses and local predictability of food af-
fecting the local distribution of responses, is con-
sistent with Gibbon and Balsam’s (1981) account
of conditioning (see also Jenkins et al., 1981).
Specifically, they argued that two timing mecha-
nisms are involved in conditioning: a gross timing
mechanism and a fine timing mechanism. The
gross timing mechanism is sensitive to the global
rate of reinforcement in the CS and background.
When the ratio of the expectancy of reinforcement
in the background and CS periods (the c/t ratio)
exceeds some threshold, then responses will occur
during the CS. The gross timing mechanism there-
fore controls the decision of whether responses
will occur in the presence of a stimulus. Once
responding is well established by the gross timing
mechanism, then the fine timing system is ini-
tiated. The fine timing system is simply Scalar
Timing Theory, already described above, and it
controls the decision of when responses will occur
in the presence of a stimulus.

The Gibbon and Balsam account is a dual
process model in which conditioning (the gross
timing mechanism) and timing (the fine timing
mechanism) are separate and are initiated serially.
The notion that the timing system is much slower
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than the conditioning system is a common view,
as represented by a comment by Sutton and Barto
(1990) ‘‘… when animals are presented with a very
long-duration CS, followed by the US, they even-
tually learn to respond differentially to the earlier
and later portions of the CS.’’ Interestingly, there
is very little evidence in support of this notion.
Gibbon et al. (1980) found that the acquisition of
responding (conditioning) emerged much earlier
than the acquisition of a well established temporal
gradient during the CS (timing). However, they
did not attempt to directly compare the emer-
gence of these two features of responding by using
a common metric. On the other hand, Holder and
Roberts (1985) conducted a systematic investiga-
tion of the emergence of timing and conditioning
and concluded that the two features of responding
emerged almost simultaneously. While further in-
vestigation will undoubtedly resolve the differ-
ences in empirical outcomes of these two studies,
the Holder and Roberts investigation raises the
possibility that these two influences on responding
may arise together, perhaps even through a single
process. As shown in the following section, a
hybrid model that requires only one process for
the emergence of response strength and timing
can provide a reasonably good qualitative fit to
the results in Figs. 2–4.

4. Model simulations

4.1. Specification of the model

The Behavioral Theory of Timing (Killeen and
Fetterman, 1988) was developed to account for
the time of occurrence of responses that did not
require the assumption that the animal was an
information-processing system with modules for
temporal perception, memory, and decision. In-
stead, the basic assumption was that the animal
changed from one behavior state to another and
that, when reinforcement occurred, the behavior
state at that instant was strengthened. Machado
(1997) provided a precise statement of a version
of this theory that accounted for behavior in
many timing experiments (hereafter referred to as
Machado’s Behavioral Theory of Timing, MBT).

Fig. 4. A comparison of fixed (Procedure 4) and random ITI
durations (Procedure 3). The top panel displays the discrimi-
nation ratios for the two conditions, averaged over the last
half of training. The bottom panel displays the mean head
entries per minute as a function of time since signal onset for
the two conditions. The average time of signal termination (15
s) is indicated by a break in the functions.

Despite the behavioral origins of the theory, it
may be described in the same information-pro-
cessing framework that has been used to describe
Scalar Timing Theory.

There are three parts of the theory: behavioral
states, learned associations, and a response rule.
The behavioral states may be considered to be the
perceptual representation of a time interval, X:,t,
that is initiated by an event (a change in the status
of a stimulus); the learned associations serve as a
memory of the time of reinforcement relative to
some event, V:,t ; and the response rule is the basis
for the decision whether or not to respond at any
given moment in time, Rt.

Any event may serve as a time marker: stimulus
onset, stimulus termination, reinforcement, or re-
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sponse. When a time marker occurs, a cascade of
functions is initialized; the first function is set to 1
and the others to 0. Then, as time progresses, a
family of n gamma functions emerge as shown in
the top panel of Fig. 5; n is a parameter of the
model. This figure is based on Eq. (1), in which t
is the time since the time marker, i is the individ-
ual function number, and l controls the rate of
change. At any given time (T) since the time

marker, the perceptual representation of that time
is X:,T, where this is a vector of n activation
heights, one for each function (15 i5n). Thus,
time is not represented by an amount (as in Scalar
Timing Theory) but as a pattern of heights of the
individual activation functions.

Xi,t=Xi,t−1−lXi,t−1+lXi−1,t−1 for i\1
(1)

The strength weights for the individual func-
tions (which represents the memory for reinforce-
ment), Vi,t, increase at the time of reinforcement
and decrease at all times. The updating equations
for the strength weights of the individual func-
tions (15 i5n) are:

Vi,t=Vi,t−1+a [Xi,t−1�(1−Vi,t−1)] (2a)

Vi,t=Vi,t−1+b [Xi,t−1�(0−Vi,t−1)] (2b)

Eq. (2a) only applies if reinforcement occurs on
time step t ; Eq. (2b) applies at all time steps. Note
that Xi,t is the height of the ith activation func-
tion, and Vi,t is the corresponding strength weight
of the ith function. The a/b ratio is an index of
the relative impact of reinforcement.

An example of the strength weights obtained
from Eqs. (2a) and (2b) is shown in the middle
panel of Fig. 5. This particular distribution of
strength weights was obtained from a procedure
in which reinforcement was delivered 15 s after a
time marker; the distribution is made up of the
asymptotic strength weights of each function on
the last time step of a 1000-m simulation session.
At asymptote, the strength of the memory for
reinforcement, Vi,t, is relatively constant for each
function. As seen in the middle panel of Fig. 5,
Functions 8 and 9 received the most weight. Re-
ferring back to the pattern of activation in the top
panel, one can see that Functions 8 and 9 were
highly active at 15 s after the marker (indicated by
the arrow). Thus, the amount of activation of
each function at a particular time reflects the
eligibility of that function to be modified by rein-
forcement. The consequent distribution of
strength weights reflects which functions were
most active at the time of reinforcement.

The decision to respond at time t is based on
the sum of the products of the height of each

Fig. 5. Top panel: Strength of activation (X) of the cascade of
gamma functions as a function of time since a marker with a
lambda value of 0.5. A possible time of reinforcement is
indicated by the arrow. Middle panel: Strength weights of the
memory for reinforcement (V) associated with each of the first
17 state activation functions. Bottom panel: the family of
functions generated by the product of the individual state
activation functions (X) and their associated strength weights
(V); the thick line is the sum of the individual products, R.
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activation function (Xi,t) and its related strength
weight (Vi,t) at that time, scaled by a constant h.
Machado (1997) used this deterministic quantity,
Rt, to map onto response rate measures, but
indicated that responses could be generated
stochastically from the strength of Rt.

Rt=h�SXi,tVi,t (3)

The individual products of the activation func-
tions and their associated weights are displayed in
the bottom panel of Fig. 5 (thin lines), along with
the sum of the products (heavy line). Functions 8
and 9, which received the most weight and were
most active at the time of reinforcement, are the
two highest individual functions. The sum of the
weighted activation functions forms a gradient
that has a maximum near the time of reinforce-
ment.

4.2. Implementation of the model

The MBT model described above was imple-
mented for purposes of simulation of the results
displayed in Figs. 2–4. Machado’s (1997) specifi-
cation of the model included only a single time
marker, but two time markers were required for
simulation of the above results: one for stimulus
onset and one for reinforcement. In our imple-
mentation of the MBT model, these two time
markers initiated separate activation and strength
processes. Eqs (1–3) were used with the time of
occurrence of the most recent CS as the time
marker to produce XCS, VCS, and RCS. These
equations were also used with the reinforcement
as the time marker to produce XUS, VUS, and RUS.

The strength of the response at time t, Rt, was
converted into all-or-none responses. A response
was assumed to occur at time t whenever RCS or
RUS was greater than a uniform random number
between 0 and 1.

The simulation program was written in a mod-
ular form in Matlab, version 5.0 (The Math-
Works, Inc., Natick, MA). The calling program
was:

1. iprocedure–procedurename
% Initialize the procedure

2. imodel–MBT
% Initialize the model

3. for session–clock=0:session–duration
4. procedure–procedurename

% Run the procedure for 1 s
5. model–MBT

% Run the model for 1 s
6. end
7. record

% Record the data
The procedure determines the times of occur-

rence of stimuli and reinforcements, and it re-
ceives information about the times of occurrence
of responses from the model. The model deter-
mines the times of occurrence of responses, and it
receives information about the occurrence of stim-
uli and reinforcements from the model (see
Church, 1997 for further description of this mod-
ular approach.) By using a modular structure, as
demonstrated by the Matlab code above, one can
easily change the procedure (Lines 1 and 4), with-
out having to modify the original code associated
with the model (Lines 2 and 5). This separation of
model and procedure provides confidence that the
same model of the animal’s processing system is
being used for different procedures.

Because the basic data structure of Matlab is
the matrix, the code is easy to read and write. For
example, the Matlab code for Eq. (2a), which
updates the strength of the CS (VCS) at the time of
reinforcement, is: VCS=VCS+a�XCS .� VCS. The
‘.�’ indicates that there was array multiplication
(multiplication of corresponding elements) of the
vectors XCS and VCS, which contained the individ-
ual values of activation and strength for the n
activation functions.

4.3. Selection of parameters

The session duration of 1000 min resulted in
the delivery of approximately 600 stimuli and
reinforcers in each run of the simulation, an
amount comparable to that received by the rats.
The initial parameters were chosen on the basis of
parameters that were used by Machado (1997)
and were then modified slightly to improve the
quality of fit to the experimental data. Only three
runs of the simulation (with variations in parame-
ters) were required in order to obtain parameters
that provided good qualitative fits of the experi-
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mental data. The simulation results, which are
displayed in the following section, were obtained
on the third run.

Because the mean signal to reinforcer and re-
inforcer to reinforcer intervals were the same in
all four procedures, the same parameter values
could be used for all of the simulations. The
parameter values were as follows: n=60, l=
0.5, a=0.01, b=0.2, and h=1. The initial val-
ues of VCS, VUS, RCS, and RUS were set to 0.
The activation functions were initialized so that
the activation of the first function at the first
time, relative to both the CS and the US
marker, was set to 1 and all other functions
were 0.

4.4. Simulation results

4.4.1. Food at end 6ersus food at random
The results of the MBT simulation on the

Procedures 1 and 2 are displayed in Fig. 6. The
organization and content of Fig. 5 is the same
as the actual data that were displayed in Fig. 2.
There are two striking features of the simulation
output. First, the discrimination ratios are or-
dered correctly, but are of much lower magni-
tude than the actual data, particularly for the
food at end procedure. However, the temporal
gradients were quite similar to the actual data.
The food at random procedure resulted in a
constant rate of responding that was approxi-
mately 10–15 responses/min (the rats responded
at about ten responses/min). The food at end
procedure resulted in an increasing rate of re-
sponding during the signal and then a decreasing
rate of responding after signal termination,
falling to an ultimate baseline rate of around ten
responses/min. The major difference in the simu-
lation data (which contributed to both the dis-
crimination ratios and the shape of the response
rate functions) was that the model produced
more responding after signal termination than
the rats—responding was both of greater magni-
tude and persisted for a longer duration. The
higher responding after signal termination by the
model contributed to a lower overall discrimina-
tion ratio.

Fig. 6. Simulation results for the comparison of food at the
end of the CS (Procedure 2) versus food at random times
(Procedure 1).

4.4.2. Fixed 6ersus random CS duration
The results of the simulations on Procedures 2

and 3 are displayed in Fig. 7 (these results can be
compared to the empirical data portrayed in Fig.
3). The results of the MBT simulations were
qualitatively impressive in that they captured the
primary difference between fixed and random du-
ration CSs: the response rate during the CS was
rising when the CS was a fixed duration and was
relatively constant (after an initial sharp increase
and decrease) when the CS was a random dura-
tion. The discrimination ratios produced by MBT
simulations, for the two procedures were similar
in magnitude. This was also observed in the data,
although the discrimination ratios produced by
the model were substantially lower than those
achieved by the rats. The low discrimination ra-
tios appeared to be due to greater responding in
the nonsignal period by the model than the rats.
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4.4.3. Fixed 6ersus random ITI
The MBT simulation results on the fixed versus

random ITI procedures are displayed in Fig. 8.
Again, the qualitative features of the temporal
gradients of the model’s output were similar to
the qualitative features of the rat’s output (see
Fig. 4). In particular, the responding during the
CS increased sharply during the first 2 s of the CS
duration and then was steady or modestly de-
creasing. Responding during the ITI decreased
gradually in the Random group, but increased in
the Fixed group in the later portion of the ITI.
Thus, the model demonstrated the key feature
that was also present in the rat’s data: temporal
anticipation of the upcoming reinforcer during the
fixed ITI.

The model’s performance, as measured by the
discrimination ratios, was qualitatively different
from the performance of the rats. The discrimina-

Fig. 8. Simulation results for the comparison of a fixed (Proce-
dure 4) and random (Procedure 3) duration ITI.

Fig. 7. Simulation results for the comparison of a fixed (Proce-
dure 2) and random (Procedure 3) duration CS.

tion ratios produced by the model were lower
than the discrimination ratios produced by rats.
And, the discrimination ratios in the fixed ITI
were higher than in the random ITI, a trend that
was not present in the rat data. There was again
evidence of too much responding in the ITI,
particularly in the random ITI procedure, which
resulted in a low discrimination ratio.

5. General discussion

The MBT model (Machado, 1997) accounted
qualitatively for performance of rats on four pro-
cedures that can be viewed either as conditioning
or timing procedures. The global response rates
were shown as discrimination ratios, and the local
rates were shown as gradients of responding as a
function of time since stimulus onset. The MBT
model provided a basis for understanding how the
global rate of reinforcement controls the global
rate of responding, and how the local expected
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time to reinforcement controls the local rate of
responding. Quantitatively, the model’s perfor-
mance (shown in Figs. 6–8) was somewhat differ-
ent from the performance of the rats (shown in
Figs. 2–4). The major problem was that the
model yielded considerable generalization of re-
sponding in the ITI, which resulted in low dis-
crimination ratios, even in the procedures in
which fairly optimal conditioning parameters
were employed (e.g. Procedure 2). This failure of
the model appears to be related to the asymmetri-
cal generalization gradients that result from the
cascade of gamma functions, an inherent charac-
teristic of the function form of the perceptual
representation of time.

We have not as yet conducted a broad search of
the parameter space with this model, so improve-
ments in the quantitative fit of the data would
undoubtedly be possible. The parameters that
could be modified are: l, the intensity parameter
of the gamma distribution that determines the
rate of change of the activation functions, the a/b
ratio, which determines the relative impact of
reinforcement, and h, the constant that modifies
the strength of the response tendency. All of these
parameters have effects on the shape of the re-
sponse rate functions. For example, modifications
of the a/b ratio affects the height and width of
the response gradient, but does not alter the
asymmetrical shape of the gradient.

Another problem with the perceptual represen-
tation of time in the MBT model is that the
cascade of gamma functions provides a basis for
timing only within a restricted range—beyond
some duration the number of functions with avail-
able activation decreases toward zero. This is due
to the fact that activation continues to flow out of
the system, after the maximum number of func-
tions has been reached. For the present simula-
tions, with a value of l that provided adequate
response gradients during the CS, 60 functions
were required in order to time both the short
duration CS and the longer duration US–US
interval.

As noted in the Introduction, real-time condi-
tioning models also provide a basis for predicting
the effects of classical conditioning procedures on
response strength and timing measures of perfor-

mance. Real-time conditioning models are usually
considered to be variants of state-based condition-
ing models, with time explicitly represented. The
equations of real-time conditioning models, how-
ever, may also be described in terms of modules
for perception, memory, and decision. In Fig. 5,
the three parts of Machado’s version of the Be-
havioral Theory of Timing were labeled ‘strength
of activation,’ ‘Strength of memory,’ and
‘Strength of response’. Real-time conditioning
models also contain the same three parts.

An example of a real-time conditioning model
is the complete-serial-compound version of the
time-derivative model (TDM) of Pavlovian condi-
tioning (Sutton and Barto, 1990). The perceptual
representation of a stimulus, such as a noise that
lasts for 15 s, is equivalent to a series of different
component stimuli each lasting for a short inter-
val of time (t) that are activated in a serial fashion
(see Fig. 9, top panel). Eq. (4) specifies the percep-
tion (Xi,t) of each of these components (i ) at time
t ; ki,t−1 denotes the on-off status of stimulus
component i (1 or 0) on the previous time step
(t−1). At the onset of the stimulus (T), all ele-
ments are initialized at 0 (X:,T=0). Stimulus com-
ponents are successively activated, one at each
time step. Once an element has been activated, its
strength decays exponentially, with the rate of
decay determined by l.

Xi,t=Xi,t−1−lXi,t−1+lki,t−1 (4)

The memory representation in the TDM model
is a vector of strength weights, with a different
strength weight calculated for each function at
each time step. Eq. (5) specifies the strength (Vi,t)
of each stimulus component (i ) at time t. The
variable, Ut codes the presence (Ut=1) or absence
(Ut=0) of reinforcement at time t ; a, b, and g are
weighting parameters.

Vi,t=Vi,t−1+b(Ut+gRt−Rt−1)aXi,t (5)

Changes in strength occur at CS onset, CS
termination, during the CS, and at the time of US
presentation. At CS onset, DVi,t=bgRt ·aXi,t.
During the CS, DVi,t=b(gRt−Rt−1)aXi,t. At CS
termination, DVi,t= −bRt−1 ·aXi,t. The US leads
to DVi,t=b(1+gRt−Rt−1)aXi,t. Thus, CS onset
and US presentation lead to increments in V,
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whereas CS termination leads to a decrement in
V. Notice that every change in strength includes
the multiplicative factor, aXi,t, which means that
the level of activation of the various components
will always affect the strength weights. Thus, the
parameter l, which determines the shape of the
activation functions produces important effects on
the strength weights. The other factor which is
involved in instances where increments in V occur
is g, which is a discount parameter that reflects

imminence weighting of the upcoming US. The
primary effect of g is to determine the shape and
peak rate of the response rate function, R, with
smaller values of g producing more accelerated
response rate functions, but with a lower peak
rate.

The middle panel of Fig. 9 displays a set of
strength weights obtained after training for 300
min (178 trials) with Procedure 1 (see Fig. 1),
using 1-s time steps, l=0.6, g=0.99, b=1.0, and
a=0.05. The strength weights were obtained at
the end of training, during the last time step of
the last CS in the simulation. In general, the
components that are activated nearer to the time
of reinforcement receive greater strength weights,
because the shape of the memory structure is
influenced by the pattern of activation at the time
of reinforcement. However, unlike MBT, the
shape of the strength gradient does not directly
represent the strength of the activation functions.
This is due to the discounting parameter, g, which
reduces the weight of the current information
about the imminence of the US. Also notice that
only those functions that were active prior to the
time of reinforcement receive any strength; there
is no generalization after reinforcement. This is
due to the fact that components are no longer
activated once the CS is terminated. The TDM
model can generate strength weights after CS
termination if the implementation of the model
includes a cascade that is initiated when the CS is
terminated (Moore and Choi, 1997).

The response is produced by the variable Rt,
which is the sum of the strength weights of all
active components (see Eq. (6)). Because only one
component is active at any time step, Rt is the
strength of the active component. The bottom
panel of Fig. 9 displays the strength of response
obtained in the simulation with Procedure 1. Be-
cause the strength of response is determined di-
rectly by the strength of the active component, the
response gradient is of the same shape as the
strength weights, with an increasing response gra-
dient that peaks 1 time step before the US.

Rt=SVi,tki,t if RtB0, it is set to 0 (6)

A comparison of MBT and TDM involves con-
trasting their perceptual representations, memory

Fig. 9. Top panel: Strength of activation (X) of the serially
activated stimulus components as a function of time since a
marker with a lambda value of 0.6. A possible time of rein-
forcement is indicated by the arrow. Middle panel: Strength
weights of the memory for reinforcement (V) associated with
each of the first 14 stimulus components. Bottom panel: the
strength of response, R, as a function of time since a marker.
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representations, and response strengths (see Figs.
5 and 9).

The perceptual representation of time in both
models consists of a cascade of functions (see Eqs.
(1) and (4)) that can be activated by any event
(e.g. CS onset, CS termination, US occurrence).
The functions used in these two theories differ in
shape, but they serve to cover a range of physical
times with multiple values. The decay process in
the difference equations is the same, but the incre-
mental process differs. Increments of activation in
MBT come from the previous function; incre-
ments in TDM come from the on–off status of
the element on the previous time step. This differ-
ence results in a gradual increase in activation in
the MBT model vs. a sharp increase in activation
in the TDM model. Also, in MBT, activation
continues to flow through the system after the CS
is terminated, whereas, in TDM, new components
are fired only as long as the CS is on.

The perceptual representations in these two
models suffer from two major problems: they
require a large number of functions for timing to
occur over a wider scale (e.g. in the above imple-
mentation of MBT, 60 functions were required in
order to concurrently time the 15 s CS and 90 s
US–US intervals); and they do not easily produce
the scalar property. One nice feature of MBT is
that the activation heights become more similar at
longer delays than at shorter delays, meaning that
shorter times are more discriminable than longer
times.

The memory representation in both models
consists of a vector of strength weights. In both
models, the memory representation is strongly
related to the pattern of activation at the time of
reinforcement, but the updating equations differ
fundamentally (see Eqs. (2a), (2b) and (5)). There
are three major differences in the learning rules.
The first difference is in the conditions under
which decrements in V occur. In MBT, strength is
assumed to decrease at all times, except when the
reinforcer occurs. So, strength is lost during the
CS and during the ITI. In TDM, decreases in
strength can only occur at CS termination; during
the ITI Vi,t=Vi,t−1. Accordingly, the MBT model
will produce extinction with more ease than the
TDM model. For extinction to occur in the TDM

model, the decrimental effect of CS termination
must outweigh the incremental effect of CS onset,
which means that g must be small.

The second difference between the TDM and
MBT learning rules is in the conditions under
which increments in V occur. In both models,
reinforcement increments strength. However, in
TDM, strength is also incremented at the time of
CS onset. The difference is due to the fact that the
TDM model encodes the on-off status of each
component of a given CS through the variable ki.
The variable ki, serves to encode both the state
and the passage of time since an event. On the
other hand, the MBT model encodes only events.
By encoding the state, the TDM model can pro-
duce stimulus competition effects (e.g. blocking,
overshadowing). By encoding the event, the TDM
model can produce temporal effects (e.g. response
timing, CS–US interval effects, etc.). The MBT
model can only account for temporal effects in its
present form, but it could be extended to encode
the state as well as the event by the addition of a
variable such as ki.

Finally, a third difference in the learning rules
is in the factors that produce the structure of
memory. In both models, changes in strength are
due to a combination of activation (Xi,t) and
strength (Vi,t). However, in TDM, the discount
factor (g) produces important additional effects
on the structure of memory

While the learning rules in the real-time models
appear to be promising in their ability to accom-
modate many stimulus and temporal variables,
they should be explored more thoroughly under a
wider range of procedures from both the condi-
tioning and timing traditions. For example, it is
not clear that the real-time models are capable of
generating the scalar timing property. Moreover,
there has not yet been a serious attempt to pro-
duce good quantitative fits to the data. The major
basis for evaluating a hybrid theory is the extent
to which the predictions of the model correspond
to the quantitative features of the behavior of
animals. A quantitative fit is much stronger sup-
port than a qualitative one, especially if the
parameters of the model are individually affected
by different independent variables. Thus, a more
rigorous application of the real-time theories may
disclose the need for an alternative approach.
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The output of the two models (strength of
response) is similar (Eqs. (3) and (6)). In both
cases, the response strength is determined by a
multiplicative combination of the memory repre-
sentation and current perception. So, in both
models, the shape of the response rate function
directly reflects the structure of the memory repre-
sentation. However, in MBT, the current percep-
tion is the level of activation of each of the
functions; in TDM, the current perception is sim-
ply the on–off status of each of the components.

Placing the finer differences in detail aside, the
structure of the TDM real-time conditioning
model is the same as the structure of the MBT
timing model. There is no fundamental distinction
that requires one of these models to be considered
a timing model and the other to be considered a
conditioning model. They may both be considered
hybrid models that are designed to account for
both global and local features of response rate
data.

Many other hybrid models have been proposed,
and several of them have been completely spe-
cified. Two examples are the Spectral Timing
Model (Grossberg and Schmajuk, 1989) and the
Multiple-oscillator Model (Church and Broad-
bent, 1990). The Spectral Timing Model contains
three parts: Perception, memory, and decision. A
stimulus produces a series of internal events lead-
ing to a cascade of gated signal functions that are
different in form, but similar in function, to those
shown in the top panels of Figs. 5 and 9. Rein-
forcement leads to the formation of a long-term
memory trace. A response is a product of the
current perceptual representation and the memory
trace.

The Multiple-oscillator Model also contains
three parts: Perception, memory, and decision. A
stimulus initiates a bank of periodic functions,
and the vector of half-phases of each of these
functions at any given physical time serves as the
perceptual representation of time. The memory of
reinforced times is stored in a autoassociation
matrix, and decision is based on the similarity of
the current perception of time with a retrieved
value from the matrix.

Other examples include Sutton and Barto
(1981), Desmond and Moore (1988), Klopf (1988)

and Gluck et al. (1990). The interested reader
should consult these references for a description
of the calculations involved in these theories. The
major point here is that many theories, which may
be referred to as conditioning or timing models all
contain the same three-part structure of percep-
tion, memory, and decision.

None of these theories are without their faults.
With a modular approach to the development of
theory (Church, 1997), it may be possible to mod-
ify a single module of one of these theories that
would result in a version of the theory that ac-
counts quantitatively for many different measures
of behavior under many different procedures, is
neurally plausible in terms of its perceptual repre-
sentation and memory structure, and requires a
relatively small set of parameters.

For example, the perception of time in the
TDM model may be replaced by a set of functions
that increase more gradually before decaying. In
general, the perception of time may be repre-
sented by a single function, a few functions, or by
a large number of functions. A single increasing
or decreasing function is sufficient to provide a
unique perception for every physical time. An
increasing linear function is used in Scalar Timing
Theory (Gibbon et al., 1984). An alternative is a
negatively accelerated increasing function begin-
ning at stimulus followed by a negatively acceler-
ated decreasing function beginning at stimulus
termination (Sutton and Barto, 1981). Periodic
functions such as those in the Multiple-oscillator
model (Church and Broadbent, 1990) provide a
unique perception for every physical time within a
single period, and phase discrimination within a
circadian rhythm has been used to account for the
ability of animals to go to different places at
different times of day (Krebs and Biebach, 1989;
Sakside and Wilkie, 1994).

Of course, it is possible that no hybrid model of
timing and conditioning can account for the myr-
iad of results produced by the domain of proce-
dures involving multiple stimuli and
reinforcements. As noted earlier, Gibbon and Bal-
sam (1981) have proposed that the principles re-
sponsible for the growth of associative strength
are different from the principles responsible for
the timing of responses, and that these two pro-
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cesses operate serially. It has not been established
whether two separate mechanisms are required, or
whether a single learning mechanism represented
by a hybrid model is sufficient.

In his article, ‘Are theories of learning neces-
sary’, Skinner (1950) argued for the need for
accurate information regarding the empirical de-
terminants of behavior. Now there is extensive
information available about the variables con-
trolling behavior, and there is general consensus
that theories of conditioning and timing are use-
ful. But it is not clear that separate theories are
necessary. A theory that predicted the time of
occurrence of responses during an experimental
procedure in which stimuli and reinforcements
were presented would not need to be supple-
mented by another theory that predicted average
performance.
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