Geometry, features, and orientation in vertebrate animals: A pictorial review
Ken Cheng and Nora S. Newcombe
Macquarie University & Temple University

References

 

Benhamou, S., & Poucet, B. (1998). Landmark use by navigating rats (Rattus norvegicus): Contrasting geometric and featural information. Journal of Comparative Psychology, 112, 317-322.

Burgess, N., Jackson, A., Hartley, T., & O’Keefe, J. (2000). Predictions derived from modelling the hippocampal role in navigation.  Biological Cybernetics, 83, 301-312.

Burgess, N. & O’Keefe, J. (2003). Neural representations in human spatial memory. Trends in Cognitive Science, 7, 517-519.

Chamizo, V.D. (2003). Acquisition of knowledge about spatial location: Assessing the generality of the mechanism of learning. Quarterly Journal of Experimental Psychology, 56B, 102-113.

Cheng, K. (1986). A purely geometric module in the rat’s spatial representation. Cognition, 23, 149-178.

Cheng, K. (2005a). Reflections on geometry and navigation. Connection Science, in press.

Cheng, K. (2005b). Goldfish matching geometric and featural cues: A re-interpretation of some of the data of Vargas et al. (2004). Journal of Comparative Psychology, in press.

Cheng, K., & Gallistel, C.R. (1984). Testing the geometric power of a spatial representation. In H.L. Roitblat, H.S. Terrace, & T.G. Bever (Eds.) Animal cognition (pp. 409-423). Hillsdale, NJ: Erlbaum.

Cheng, K., & Gallistel, C.R. (2005). Shape parameters explain data from spatial transformations: Comment on Pearce et al. (2004) and Tommasi and Polli (2004).  Journal of Experimental Psychology: Animal Behavior Processes, 31, 254-259.

Cheng K., & Newcombe, N.S. (2005). Is there a geometric module for spatial orientation? Squaring theory and evidence.  Psychonomic Bulletin & Review, 12, 1-23.

Dudchenko, P. (2003). The head direction system and navigation. In K.J. Jeffery (Ed.), The neurobiology of spatial behaviour (pp. 173-186). Oxford: Oxford University Press.

Egerton, S., Callaghan, V., & Chernett, P. (2000). A biologically inspired mapping model for autonomous mobile robots. In M. Mohammadin (Ed.), New frontiers in computational intelligence and its applications (pp. 20-29). Amsterdam: IOS Press.

Ekstrom, A.D., Kahana, M.J., Caplan, J.B., Fields, T.A., Isham, E.A., Newman, E.L., et al. (2003). Cellular networks underlying human spatial navigation. Nature, 425, 184-187.

Epstein, R., DeYoe, E.A., Press, D.Z., Rosen, A.C., & Kanwisher, N. (2001). Neuropsychological evidence for a topographical learning mechanism in parahippocampal cortex. Cognitive Neuropsychology, 18, 481-508.

Epstein, R., Graham, K.S., & Downing, P.E. (2003). Viewpoint-specific scene representations in human parahippocampal cortex. Neuron, 37, 865-876.

Epstein, R., Harris, A., Stanley, D., & Kanwisher, N. (1999). The parahippocampal place area: Recognition, navigation, or encoding? Neuron, 23, 115-125.

Epstein, R., & Kanwisher, N. (1998). A cortical representation of the local visual environment. Nature, 392, 598-601.

Fodor, J.A. (1983). The modularity of mind. Cambridge, MA: MIT Press.

Fritsch, D.S., Pizer, S.M., Morse, B.S., Eberly, D.H., & Liu, A. (1994). The multiscale medial axis and its applications in image registration.  Pattern Recognition Letters, 15, 445-452.

Gallistel, C.R., (1990). The organization of learning. Cambridge, MA: MIT Press.

Golob, E.J., Stackman, R.W., Wong, A.C., & Taube, J.S. (2001). On the behavioral significance of head direction cells: Neural and behavioral dynamics during spatial memory tasks. Behavioral Neuroscience, 115, 285-304.

Gouteux, S., Thinus-Blanc, C., & Vauclair, J. (2001). Rhesus monkeys use geometric and nongeometric information during a reorientation task. Journal of Experimental Psychology: General, 130, 505-519.

Hartley, T., Burgess, N., Lever, C., Cacucci, F., & O’Keefe, J. (2000). Modeling place fields in terms of the cortical inputs to the hippocampus.  Hippocampus, 10, 369-379.

Hartley, T., Maguire, E.A., Spiers, H.J., & Burgess, N. (2003). The well-worn route and the path less travelled: Distinct neural bases of route following and way finding in humans. Neuron, 37, 877-888.

Hartley, T., Trinkler, I., & Burgess, N. (2004). Geometric determinants of human spatial memory. Cognition, 94, 39-75.

Hayward, A., McGregor, A., Good, M.A., & Pearce, J.M. (2003). Absence of overshadowing and blocking between landmarks and geometric cues provided by the shape of a test arena. Quarterly Journal of Experimental Psychology, 56B, 114-126.

Hermer, L., & Spelke, E. (1994). A geometric process for spatial representation in young children. Nature, 370, 57-59.

Hermer, L., &  Spelke, E. (1996). Modularity and development: The case of spatial reorientation. Cognition, 61, 195-232.

Hermer-Vazquez, L., Spelke, E., & Katsnelson, A. (1999). Source of flexibility in human cognition: Dual task studies of space and language. Cognitive Psychology, 39, 3-36.

Huttenlocher, J., & Vasilyeva, M. (2003). How toddlers represent enclosed spaces. Cognitive Science, 27, 749-766.

Jacobs, L.F., & Schenk, F. (2003). Unpacking the cognitive map: The parallel map theory of hippocampal function. Psychological Review, 110, 285-315.

Jeffery, K.J. (Ed.) (2003). The neurobiology of spatial behaviour. Oxford: Oxford University Press.

Kelly, D., & Spetch, M.L. (2001). Pigeons encode relative geometry. Journal of Experimental Psychology: Animal Behavior Processes, 27, 417-422.

Kelly, D., & Spetch, M.L. (2004a). Reorientation in a two-dimensional environment I: Do adults encode the featural and geometric properties of a two-dimensional schematic of a room? Journal of Comparative Psychology, 118, 82-94.

Kelly, D., & Spetch, M.L. (2004b). Reorientation in a two-dimensional environment: II. Do pigeons (Columba livia) encode the featural and geometric properties of a two-dimensional schematic of a room?  Journal of Comparative Psychology, 118, 384-395.

Kelly, D., Spetch, M.L., & Heth, C.D. (1998). Pigeon’s encoding of geometric and featural properties of a spatial environment. Journal of Comparative Psychology, 112, 259-269.

Learmonth, A.E., Nadel, L., & Newcombe, N.S. (2002). Children’s use of landmarks: Implications for modularity theory. Psychological Science, 13, 337-341.

Learmonth, A.E., Newcombe, N.S., & Huttenlocher, J. (2001). Toddlers’ use of metric information and landmarks to reorient. Journal of Experimental Child Psychology, 80, 225-244.

Lever, C., Wills, T., Caccucci, F., Burgess, N., & O’Keefe, J. (2002). Long term plasticity in hippocampal place-cell representation of environmental geometry. Nature, 416, 90-94.

Leyton, M. (1992). Symmetry, Causality, Mind. Cambridge, MA: MIT Press.

Maguire, E.A., Burgess, N., Donnett, J.G., Frackowiak, R.S.J., Frith, C.D., & O’Keefe, J. (1998). Knowing where and getting there: A human navigation network. Science, 280, 921-924.

Maguire, E.A., Burgess, N., & O’Keefe, J. (1999). Human spatial navigation: cognitive maps, sexual dimorphism, and neural substrates. Current Opinion in Neurobiology, 9, 171-177.

Maguire, E.A., Frith, C.D., Burgess, N., Donnett, J.G., & O’Keefe, J. (1998). Knowing where things are: Parahippocampal involvement in encoding object locations in virtual large-scale space. Journal of Cognitive Neuroscience, 10, 61-76.

Margules, J., & Gallistel, C.R. (1988). Heading in the rat: Determination by environmental shape. Animal Learning & Behavior, 16, 404-410.

Marr, D. (1982). Vision. Cambridge, MA: MIT Press.

Newcombe, N.S. (2002). The nativist-empiricist controversy in the context of recent research on spatial and quantitative development. Psychological Science, 13, 395-401.

Nolfi, S. (2002). Power and limits of reactive agents. Robotics and Autonomous Systems, 42, 119-145.

O’Keefe, J., & Burgess, N. (1996). Geometric determinants of the place fields of hippocampal neurons. Nature, 381, 425-428.

O’Keefe, J., Burgess, N., Donnett, J.G., Jeffery, K.J., & Maguire, E.A. (1999). Place cells, navigational accuracy, and the human hippocampus. In G.W. Humphreys, J. Duncan, & A. Treisman (Eds.), Attention, space, and action: Studies in cognitive neuroscience (pp. 153-164). Oxford: Oxford University Press.

O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford: Clarendon Press.

Pearce, J.M., Good, M.A., Jones, P.M., & McGregor, A. (2004). Transfer of spatial behavior between different environments: Implications for theories of spatial learning and for the role of the hippocampus in spatial learning.  Journal of Experimental Psychology: Animal Behavior Processes, 30, 135-147.

Pearce, J.M., Ward-Robinson, J., Good, M., Fussell, C., & Aydin, A. (2001). Influence of a beacon on spatial learning based on the shape of the test environment. Journal of Experimental Psychology: Animal Behavior Processes, 27, 329-344.

Pizer, S.M., Fritsch, D.S., Yushkevich, P.A., Johnson, V.E., & Chaney, E.L. (1999). Segmentation, registration, and measurement of shape variation via image object shape.  IEEE Transactions on Medical Imaging, 18, 851-865.

Poucet, B., Lenck-Santini, P.-P., & Save, E. (2003). Drawing parallels between the behavioural and neural properties of navigation. In K.J. Jeffery (Ed.), The neurobiology of spatial behaviour (pp. 187-198). Oxford: Oxford University Press.

Sovrano, V.A., Bisazza, A., & Vallortigara, G. (2002). Modularity and spatial reorientation in a simple mind: encoding of geometric and nongeometric properties of a spatial environment by fish. Cognition, 85, B51-B59.

Sovrano, V.A., Bisazza, A., & Vallortigara, G. (2003). Modularity as a fish (Xenotoca eiseni) views it: Conjoining geometric and nongeometric information for spatial reorientation. Journal of Experimental Psychology: Animal Behavior Processes, 29, 199-210.

Tommasi, L., Gagliardo, A., Andrew, R.J., & Vallortigara, G. (2003). Separate processing mechanisms for encoding geometric and landmark information in the avian brain. European Journal of Neuroscience, 17, 1695-1702.

Tommasi, L., & Polli, C. (2004). Representation of two geometric features of the environment in the domestic chick (Gallus gallus). Animal Cognition, 7, 53-59.

Tommasi, L., & Vallortigara, G. (2000). Searching for the center: Spatial cognition in the domestic chick (Gallus gallus). Journal of Experimental Psychology: Animal Behavior Processes, 26, 477-486.

Tommasi, L., Vallortigara, G., & Zanforlin, M. (1997). Young chicks learn to localize the center of a spatial environment. Journal of Comparative Physiology A, 180, 567-572.

Vallortigara, G., Pagni, P., & Sovrano, V.A. (2004). Separate geometric and non-geometric modules for spatial reorientation: Evidence from a lopsided animal brain. Journal of Cognitive Neuroscience, 16, 390-400.

Vallortigara, G., Zanforlin, M., & Pasti, G. (1990). Geometric modules in animals’ spatial representations: A test with chicks (Gallus gallus domesticus). Journal of Comparative Psychology, 104, 248-254.

Vargas, J.P., López, J.C., Salas, C., & Thinus-Blanc, C. (2004). Encoding of geometric and featural information by goldfish (Carassius auratus).  Journal of Comparative Psychology, 118, 206-216.

Vargas, J.P., Petruso, E.J., & Bingman, V.P. (2004). Hippocampal formation and geometric navigation in pigeons. European Journal of Neuroscience, 20, 1937-1944.

Wall, P.L., Botly, L.C.P., Black, C.K., & Shettleworth, S.J. (2004). The geometric module in the rat: independence of shape and feature learning in a food finding task. Learning & Behavior, 32, 289-298.

Wang, R.F., & Spelke, E.S. (2002). Human spatial representation: Insights from animals. Trends in Cognitive Sciences, 6, 376-382.

Wang, R.F., & Spelke, E.S. (2003). Comparative approaches to human navigation. In K.J. Jeffery (Ed.), The neurobiology of spatial behaviour (pp. 119-143). Oxford: Oxford University Press.

Webb, B. (2000). What does robotics offer animal behaviour? Animal Behaviour, 60, 545-558.

Yeap, W.K., & Jefferies, M.E. (1999). Computing representations of the local environment. Artificial Intelligence, 107, 265-301.

 

©2005 All copyrights for the individual chapters are retained by the authors. All other material in this book is copyrighted by the editor, unless noted otherwise. If there has been an error with regards to unacknowledged copyrighted material, please contact the editor immediately so that this can be corrected. Permissions for using material in this book should be sent to the editor.