Benhamou, S., & Poucet, B. (1998). Landmark use by navigating rats (Rattus
norvegicus): Contrasting geometric and featural information.
Journal of Comparative Psychology, 112, 317-322.
Burgess, N., Jackson, A., Hartley, T., & O’Keefe, J. (2000).
Predictions derived from modelling the hippocampal role in
navigation. Biological Cybernetics, 83, 301-312.
Burgess, N. & O’Keefe, J. (2003). Neural representations in human
spatial memory. Trends in Cognitive Science, 7,
517-519.
Chamizo, V.D. (2003). Acquisition of
knowledge about spatial location: Assessing the generality of the
mechanism of learning. Quarterly Journal of Experimental
Psychology, 56B, 102-113.
Cheng, K. (1986). A purely geometric
module in the rat’s spatial representation. Cognition, 23,
149-178.
Cheng, K. (2005a). Reflections on
geometry and navigation. Connection Science, in press.
Cheng, K. (2005b). Goldfish matching
geometric and featural cues: A re-interpretation of some of the data
of Vargas et al. (2004). Journal of Comparative Psychology,
in press.
Cheng, K., & Gallistel, C.R. (1984).
Testing the geometric power of a spatial representation. In H.L.
Roitblat, H.S. Terrace, & T.G. Bever (Eds.) Animal cognition
(pp. 409-423). Hillsdale, NJ: Erlbaum.
Cheng, K., & Gallistel, C.R. (2005).
Shape parameters explain data from spatial
transformations: Comment on Pearce et al. (2004) and Tommasi and
Polli (2004). Journal of Experimental Psychology: Animal
Behavior Processes, 31, 254-259.
Cheng K., & Newcombe, N.S. (2005).
Is there a geometric module for spatial
orientation? Squaring theory and evidence. Psychonomic Bulletin
& Review, 12, 1-23.
Dudchenko, P. (2003). The head direction system
and navigation. In K.J. Jeffery (Ed.), The neurobiology of
spatial behaviour (pp. 173-186). Oxford: Oxford University
Press.
Egerton, S., Callaghan, V., & Chernett, P.
(2000). A biologically inspired mapping model for autonomous mobile
robots. In M. Mohammadin (Ed.), New frontiers in computational
intelligence and its applications (pp. 20-29). Amsterdam: IOS
Press.
Ekstrom, A.D., Kahana, M.J., Caplan, J.B.,
Fields, T.A., Isham, E.A., Newman, E.L., et al. (2003). Cellular
networks underlying human spatial navigation. Nature, 425,
184-187.
Epstein, R., DeYoe, E.A., Press, D.Z., Rosen, A.C., & Kanwisher, N.
(2001). Neuropsychological evidence for a topographical learning
mechanism in parahippocampal cortex. Cognitive Neuropsychology,
18, 481-508.
Epstein, R., Graham, K.S., & Downing, P.E. (2003).
Viewpoint-specific scene representations in human parahippocampal
cortex. Neuron, 37, 865-876.
Epstein, R., Harris, A., Stanley, D., & Kanwisher, N. (1999). The
parahippocampal place area: Recognition, navigation, or encoding?
Neuron, 23, 115-125.
Epstein, R., & Kanwisher, N. (1998). A cortical representation of
the local visual environment. Nature,
392, 598-601.
Fodor, J.A. (1983). The modularity of mind. Cambridge, MA:
MIT Press.
Fritsch, D.S., Pizer, S.M., Morse, B.S., Eberly,
D.H., & Liu, A. (1994). The multiscale medial axis and its
applications in image registration. Pattern Recognition Letters,
15, 445-452.
Gallistel, C.R., (1990). The organization of
learning. Cambridge, MA: MIT Press.
Golob, E.J., Stackman, R.W., Wong, A.C., & Taube, J.S. (2001). On
the behavioral significance of head direction cells: Neural and
behavioral dynamics during spatial memory tasks. Behavioral
Neuroscience, 115, 285-304.
Gouteux, S., Thinus-Blanc, C., & Vauclair, J. (2001). Rhesus monkeys
use geometric and nongeometric information during a reorientation
task. Journal of Experimental Psychology: General, 130,
505-519.
Hartley, T., Burgess, N., Lever, C., Cacucci, F., & O’Keefe, J.
(2000). Modeling place fields in terms of the cortical inputs to the
hippocampus. Hippocampus, 10, 369-379.
Hartley, T., Maguire, E.A., Spiers, H.J.,
& Burgess, N. (2003). The well-worn route and the path less
travelled: Distinct neural bases of route following and way finding
in humans. Neuron, 37, 877-888.
Hartley, T., Trinkler, I., & Burgess, N. (2004). Geometric
determinants of human spatial memory. Cognition, 94, 39-75.
Hayward, A., McGregor, A., Good, M.A., & Pearce, J.M. (2003).
Absence of overshadowing and blocking between landmarks and
geometric cues provided by the shape of a test arena. Quarterly
Journal of Experimental Psychology, 56B, 114-126.
Hermer, L., & Spelke, E. (1994). A geometric process for spatial
representation in young children. Nature, 370, 57-59.
Hermer, L., & Spelke, E. (1996). Modularity and development: The
case of spatial reorientation. Cognition, 61, 195-232.
Hermer-Vazquez, L., Spelke, E., & Katsnelson, A. (1999). Source of
flexibility in human cognition: Dual task studies of space and
language. Cognitive Psychology, 39, 3-36.
Huttenlocher, J., & Vasilyeva, M. (2003). How toddlers represent
enclosed spaces. Cognitive Science, 27, 749-766.
Jacobs, L.F., & Schenk, F. (2003). Unpacking the cognitive map: The
parallel map theory of hippocampal function. Psychological Review,
110, 285-315.
Jeffery, K.J. (Ed.) (2003). The neurobiology of spatial behaviour.
Oxford: Oxford University Press.
Kelly, D., & Spetch, M.L. (2001). Pigeons encode relative geometry.
Journal of Experimental Psychology: Animal Behavior
Processes, 27, 417-422.
Kelly, D., & Spetch, M.L. (2004a). Reorientation in a
two-dimensional environment I: Do adults encode the featural and
geometric properties of a two-dimensional schematic of a room?
Journal of Comparative Psychology, 118, 82-94.
Kelly, D., & Spetch, M.L. (2004b). Reorientation in a
two-dimensional environment: II. Do pigeons (Columba livia)
encode the featural and geometric properties of a two-dimensional
schematic of a room? Journal of Comparative Psychology,
118, 384-395.
Kelly, D., Spetch, M.L., & Heth, C.D. (1998). Pigeon’s encoding of
geometric and featural properties of a spatial environment.
Journal of Comparative Psychology, 112, 259-269.
Learmonth, A.E., Nadel, L., & Newcombe, N.S. (2002). Children’s use
of landmarks: Implications for modularity theory. Psychological
Science, 13, 337-341.
Learmonth, A.E., Newcombe, N.S., &
Huttenlocher, J. (2001). Toddlers’ use of metric information and
landmarks to reorient. Journal of Experimental Child Psychology,
80, 225-244.
Lever, C., Wills, T., Caccucci, F., Burgess, N., & O’Keefe, J.
(2002). Long term plasticity in hippocampal place-cell
representation of environmental geometry. Nature, 416, 90-94.
Leyton, M. (1992). Symmetry, Causality, Mind. Cambridge, MA:
MIT Press.
Maguire, E.A., Burgess, N., Donnett, J.G., Frackowiak, R.S.J.,
Frith, C.D., & O’Keefe, J. (1998). Knowing where and getting there:
A human navigation network. Science, 280, 921-924.
Maguire, E.A., Burgess, N., & O’Keefe, J. (1999). Human spatial
navigation: cognitive maps, sexual dimorphism, and neural
substrates. Current Opinion in Neurobiology, 9, 171-177.
Maguire, E.A., Frith, C.D., Burgess, N., Donnett, J.G., & O’Keefe,
J. (1998). Knowing where things are: Parahippocampal involvement in
encoding object locations in virtual large-scale space. Journal
of Cognitive Neuroscience, 10, 61-76.
Margules, J., & Gallistel, C.R. (1988). Heading in the rat:
Determination by environmental shape. Animal Learning & Behavior,
16, 404-410.
Marr, D. (1982). Vision. Cambridge, MA: MIT Press.
Newcombe, N.S. (2002). The nativist-empiricist controversy in the
context of recent research on spatial and quantitative development.
Psychological Science, 13, 395-401.
Nolfi, S. (2002). Power and limits of reactive agents. Robotics
and Autonomous Systems, 42, 119-145.
O’Keefe, J., & Burgess, N. (1996). Geometric determinants of the
place fields of hippocampal neurons. Nature, 381, 425-428.
O’Keefe, J., Burgess, N.,
Donnett, J.G., Jeffery, K.J., & Maguire, E.A. (1999). Place cells,
navigational accuracy, and the human hippocampus. In G.W. Humphreys,
J. Duncan, & A. Treisman (Eds.), Attention, space, and action:
Studies in cognitive neuroscience (pp. 153-164). Oxford: Oxford
University Press.
O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive
map. Oxford: Clarendon Press.
Pearce, J.M., Good, M.A., Jones, P.M., & McGregor, A. (2004).
Transfer of spatial behavior between different environments:
Implications for theories of spatial learning and for the role of
the hippocampus in spatial learning. Journal of Experimental
Psychology: Animal Behavior Processes, 30, 135-147.
Pearce, J.M., Ward-Robinson, J., Good, M., Fussell, C., & Aydin, A.
(2001). Influence of a beacon on spatial learning based on the shape
of the test environment. Journal of Experimental Psychology:
Animal Behavior Processes, 27, 329-344.
Pizer, S.M., Fritsch, D.S., Yushkevich, P.A., Johnson, V.E., &
Chaney, E.L. (1999). Segmentation, registration, and measurement of
shape variation via image object shape. IEEE Transactions on
Medical Imaging, 18, 851-865.
Poucet, B., Lenck-Santini, P.-P., & Save, E. (2003). Drawing
parallels between the behavioural and neural properties of
navigation. In K.J. Jeffery (Ed.), The neurobiology of spatial
behaviour (pp. 187-198). Oxford: Oxford University Press.
Sovrano, V.A., Bisazza, A., &
Vallortigara, G. (2002). Modularity and spatial reorientation in a
simple mind: encoding of geometric and nongeometric properties of a
spatial environment by fish. Cognition, 85, B51-B59.
Sovrano, V.A., Bisazza, A., &
Vallortigara, G. (2003). Modularity as a fish (Xenotoca eiseni)
views it: Conjoining geometric and nongeometric information for
spatial reorientation. Journal of
Experimental Psychology: Animal Behavior Processes,
29, 199-210.
Tommasi, L., Gagliardo, A., Andrew, R.J., & Vallortigara, G. (2003).
Separate processing mechanisms for encoding geometric and landmark
information in the avian brain. European Journal of Neuroscience,
17, 1695-1702.
Tommasi, L., & Polli, C. (2004). Representation of two geometric
features of the environment in the domestic chick (Gallus gallus).
Animal Cognition, 7, 53-59.
Tommasi, L., & Vallortigara, G. (2000). Searching for the center:
Spatial cognition in the domestic chick (Gallus gallus).
Journal of Experimental Psychology: Animal Behavior Processes,
26, 477-486.
Tommasi, L., Vallortigara, G., & Zanforlin, M. (1997). Young chicks
learn to localize the center of a spatial environment. Journal of
Comparative Physiology A, 180, 567-572.
Vallortigara, G., Pagni, P., & Sovrano, V.A. (2004). Separate
geometric and non-geometric modules for spatial reorientation:
Evidence from a lopsided animal brain. Journal of Cognitive
Neuroscience, 16, 390-400.
Vallortigara, G., Zanforlin, M., & Pasti, G. (1990). Geometric
modules in animals’ spatial representations: A test with chicks (Gallus
gallus domesticus). Journal of Comparative Psychology,
104, 248-254.
Vargas, J.P., López, J.C., Salas, C., & Thinus-Blanc, C. (2004).
Encoding of geometric and featural information by goldfish (Carassius
auratus). Journal of Comparative Psychology, 118,
206-216.
Vargas, J.P., Petruso, E.J., & Bingman, V.P. (2004). Hippocampal
formation and geometric navigation in pigeons. European Journal
of Neuroscience, 20, 1937-1944.
Wall, P.L., Botly, L.C.P., Black, C.K., & Shettleworth, S.J. (2004).
The geometric module in the rat: independence of shape and feature
learning in a food finding task. Learning & Behavior, 32,
289-298.
Wang, R.F., & Spelke, E.S. (2002). Human spatial representation:
Insights from animals. Trends in Cognitive Sciences, 6,
376-382.
Wang, R.F., & Spelke, E.S. (2003). Comparative approaches to human
navigation. In K.J. Jeffery (Ed.), The neurobiology of spatial
behaviour (pp. 119-143). Oxford: Oxford University Press.
Webb, B. (2000). What does robotics offer animal behaviour?
Animal Behaviour, 60, 545-558.
Yeap, W.K., & Jefferies, M.E. (1999). Computing representations of
the local environment. Artificial
Intelligence, 107, 265-301.